Terrestrial laser scanning(TLS) is a useful technology for rock mass characterization. A laser scanner produces a massive point cloud of a scanned area, such as an exposed rock surface in an underground tunnel,with mi...Terrestrial laser scanning(TLS) is a useful technology for rock mass characterization. A laser scanner produces a massive point cloud of a scanned area, such as an exposed rock surface in an underground tunnel,with millimeter precision. The density of the point cloud depends on several parameters from both the TLS operational conditions and the specifications of the project, such as the resolution and the quality of the laser scan, the section of the tunnel, the distance between scanning stations, and the purpose of the scans. One purpose of the scan can be to characterize the rock mass and statistically analyze the discontinuities that compose it for further discontinuous modeling. In these instances, additional data processing and a detailed analysis should be performed on the point cloud to extract the parameters to define a discrete fracture network(DFN) for each discontinuity set. I-site studio is a point cloud processing software that allows users to edit and process laser scans. This software contains a set of geotechnical analysis tools that assist engineers during the structural mapping process, allowing for greater and more representative data regarding the structural information of the rock mass, which may be used for generating DFNs. This paper presents the procedures used during a laser scan for characterizing discontinuities in an underground limestone mine and the results of the scan as applied to the generation of DFNs for further discontinuous modeling.展开更多
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const...Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.展开更多
Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud d...Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud data for more accurate surface reconstruction and grain volume calculation.A classified denoising method was presented in this research for noise removal from point cloud data of the grain bulk surface.Based on the distribution characteristics of cloud point data,the noisy points were divided into three types:The first and second types of the noisy points were either sparse points or small point cloud data deviating and suspending from the main point cloud data,which could be deleted directly by a grid method;the third type of the noisy points was mixed with the main body of point cloud data,which were most difficult to distinguish.The point cloud data with those noisy points were projected into a horizontal plane.An image denoising method,discrete wavelet threshold(DWT)method,was applied to delete the third type of the noisy points.Three kinds of denoising methods including average filtering method,median filtering method and DWT method were applied respectively and compared for denoising the point cloud data.Experimental results show that the proposed method remains the most of the details and obtains the lowest average value of RMSE(Root Mean Square Error,0.219)as well as the lowest relative error of grain volume(0.086%)compared with the other two methods.Furthermore,the proposed denoising method could not only achieve the aim of removing noisy points,but also improve self-adaptive ability according to the characteristics of point cloud data of grain bulk surface.The results from this research also indicate that the proposed method is effective for denoising noisy points and provides more accurate data for calculating grain volume.展开更多
Laser powder bed fusion(LPBF)is a popular metal additive manufacturing technique.Generally,the materials employed for LPBF are discrete and particulate metal matters.Thus,the discontinuous behaviors exhibited by the p...Laser powder bed fusion(LPBF)is a popular metal additive manufacturing technique.Generally,the materials employed for LPBF are discrete and particulate metal matters.Thus,the discontinuous behaviors exhibited by the powder materials cannot be simulated solely using conventional continuum-based computational approaches,such as finite-element or finite-difference methods.The discrete element method(DEM)is a proven numerical method to model discrete matter,such as powder particles,by tracking the motion and temperature of individual particles.Recently,DEM simulation has gained popularity in LPBF studies.However,it has not been widely applied.This study reviews the existing applications of DEM in LPBF processing,such as powder spreading and fusion.A review of the existing literature indicates that DEM is a promising approach in the study of the kinetic and thermal fluid behaviors of powder particles in LPBF additive manufacturing.展开更多
基金funded by the NIOSH Mining Program under Contract No. 200-2016-91300
文摘Terrestrial laser scanning(TLS) is a useful technology for rock mass characterization. A laser scanner produces a massive point cloud of a scanned area, such as an exposed rock surface in an underground tunnel,with millimeter precision. The density of the point cloud depends on several parameters from both the TLS operational conditions and the specifications of the project, such as the resolution and the quality of the laser scan, the section of the tunnel, the distance between scanning stations, and the purpose of the scans. One purpose of the scan can be to characterize the rock mass and statistically analyze the discontinuities that compose it for further discontinuous modeling. In these instances, additional data processing and a detailed analysis should be performed on the point cloud to extract the parameters to define a discrete fracture network(DFN) for each discontinuity set. I-site studio is a point cloud processing software that allows users to edit and process laser scans. This software contains a set of geotechnical analysis tools that assist engineers during the structural mapping process, allowing for greater and more representative data regarding the structural information of the rock mass, which may be used for generating DFNs. This paper presents the procedures used during a laser scan for characterizing discontinuities in an underground limestone mine and the results of the scan as applied to the generation of DFNs for further discontinuous modeling.
基金financial support from the National Natural Science Foundation of China(Grant Nos.32171789,32211530031)Wuhan University(No.WHUZZJJ202220)Academy of Finland(Nos.334060,334829,331708,344755,337656,334830,293389/314312,334830,319011)。
文摘Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.
基金National Natural Science Foundation of China(No.50975121)Jilin Province Science and Technology Development Plan Item(No.20130522150JH)2013 Jilin Province Science Foundation for Post Doctorate Research(No.RB201361).
文摘Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud data for more accurate surface reconstruction and grain volume calculation.A classified denoising method was presented in this research for noise removal from point cloud data of the grain bulk surface.Based on the distribution characteristics of cloud point data,the noisy points were divided into three types:The first and second types of the noisy points were either sparse points or small point cloud data deviating and suspending from the main point cloud data,which could be deleted directly by a grid method;the third type of the noisy points was mixed with the main body of point cloud data,which were most difficult to distinguish.The point cloud data with those noisy points were projected into a horizontal plane.An image denoising method,discrete wavelet threshold(DWT)method,was applied to delete the third type of the noisy points.Three kinds of denoising methods including average filtering method,median filtering method and DWT method were applied respectively and compared for denoising the point cloud data.Experimental results show that the proposed method remains the most of the details and obtains the lowest average value of RMSE(Root Mean Square Error,0.219)as well as the lowest relative error of grain volume(0.086%)compared with the other two methods.Furthermore,the proposed denoising method could not only achieve the aim of removing noisy points,but also improve self-adaptive ability according to the characteristics of point cloud data of grain bulk surface.The results from this research also indicate that the proposed method is effective for denoising noisy points and provides more accurate data for calculating grain volume.
基金supported by National Natural Science Foundation of China(Grant No.51705170)National Research Foundation,Prime Minister’s Office,Singapore,under its Campus for Research Excellence and Technological Enterprise(CREATE)Program(Grant.No.NRF2018-ITS004-0011)Joint Funds of the National Natural Science Foundation of China(Grant No.U1808216).
文摘Laser powder bed fusion(LPBF)is a popular metal additive manufacturing technique.Generally,the materials employed for LPBF are discrete and particulate metal matters.Thus,the discontinuous behaviors exhibited by the powder materials cannot be simulated solely using conventional continuum-based computational approaches,such as finite-element or finite-difference methods.The discrete element method(DEM)is a proven numerical method to model discrete matter,such as powder particles,by tracking the motion and temperature of individual particles.Recently,DEM simulation has gained popularity in LPBF studies.However,it has not been widely applied.This study reviews the existing applications of DEM in LPBF processing,such as powder spreading and fusion.A review of the existing literature indicates that DEM is a promising approach in the study of the kinetic and thermal fluid behaviors of powder particles in LPBF additive manufacturing.