Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moder...Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moderate defects have been discovered to exist memristive feature. However, it is very difficult to obtain moderate defect degree in 2D materials, and studied on modulation means and mechanism becomes urgent and essential. In this work, we realized memristive feature with a bipolar switching and a configurable on/off ratio in a two-terminal MoS_(2) device(on/off ratio ~100), for the first time, from absent to present using laser-modulation to few-layer defect-free MoS_(2)(about 10 layers), and its retention time in both high resistance state and low resistance state can reach 2×10^(4) s. The mechanism of the laser-induced memristive feature has been cleared by dynamic Monte Carlo simulations and first-principles calculations. Furthermore, we verified the universality of the laser-modulation by investigating other 2D materials of TMDs. Our work will open a route to modulate and optimize the performance of 2D semiconductor memristive devices.展开更多
Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy ...Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.展开更多
Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and c...Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.展开更多
An all fiber wavelength selective Q switching modulator based on fiber grating loop mirror is proposed. A newly configured Q switched erbium doped fiber laser using this all fiber modulator is numerically analyzed tak...An all fiber wavelength selective Q switching modulator based on fiber grating loop mirror is proposed. A newly configured Q switched erbium doped fiber laser using this all fiber modulator is numerically analyzed taking into account the effects of the spontaneous emission.展开更多
We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump....We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.展开更多
Hyperdoping that introduces impurities with concentrations exceeding their equilibrium solubility has been attract-ing great interest since the tuning of semiconductor properties increasingly relies on extreme measure...Hyperdoping that introduces impurities with concentrations exceeding their equilibrium solubility has been attract-ing great interest since the tuning of semiconductor properties increasingly relies on extreme measures.In this review we fo-cus on hyperdoped silicon(Si)by introducing methods used for the hyperdoping of Si such as ion implantation and laser dop-ing,discussing the electrical and optical properties of hyperdoped bulk Si,Si nanocrystals,Si nanowires and Si films,and present-ing the use of hyperdoped Si for devices like infrared photodetectors and solar cells.The perspectives of the development of hy-perdoped Si are also provided.展开更多
Dual wavelength high-frequency chaos based on nonlinear effects is generated in an erbium-doped fibre ring laser, where tunable filters (TFs) are used to select the wavelength. A receiving fibre laser with an open-l...Dual wavelength high-frequency chaos based on nonlinear effects is generated in an erbium-doped fibre ring laser, where tunable filters (TFs) are used to select the wavelength. A receiving fibre laser with an open-loop structure is constructed with identical parameters as the transmitting fibre laser. By tuning the TFs and the fibre delay line in the receiving fibre laser, chaos synchronization has been observed at anyone the two wavelengths after the chaos is transmitted over 1 km. It is of far reaching importance to construct the high capacity chaos communication system.展开更多
The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r...The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.展开更多
During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mech...During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.展开更多
One challenge to the use of lightly-doped, high efficiency emitters on multicrystalline silicon wafers is the poor gettering efficiency of the diffusion processes used to fabricate them. With the photovoltaic industry...One challenge to the use of lightly-doped, high efficiency emitters on multicrystalline silicon wafers is the poor gettering efficiency of the diffusion processes used to fabricate them. With the photovoltaic industry highly reliant on heavily doped phosphorus diffusions as a source of gettering, the transition to selective emitter structures would require new alternative methods of impurity extraction. In this paper, a novel laser based method for gettering is investigated for available silicon wafers used its impact on commercially in the manufacturing of solar cells. Direct comparisons between laser enhanced gettering (LasEG) and lightly-doped emitter diffusion gettering demonstrate a 45% absolute improvement in bulk minority carrier lifetime when using the laser process. Although grain boundaries can be effective gettering sites in multicrystalline wafers, laser processing can substantially improve the performance of both grain boundary sites and intra-grain regions. This improvement is correlated with a factor of 6 further decrease in interstitial iron concentra- tions. The removal of such impurities from multicrystalline wafers using the laser process can result in intra-grain enhancements in implied open-circuit voltage of up to 40 mV. In instances where specific dopant profiles are required for a diffusion on one surface of a solar cell, and the diffusion process does not enable effective gettering, LasEG may enable improved gettering during the diffusion process.展开更多
We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump...We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.展开更多
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The s...A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.展开更多
We demonstrate a S/S+ band tunable thulium doped fiber laser (TTDFL) anchored on 50GHz ITU-T Grid. Over 57nm of tuning range (1454.9 ~ 1512.0 nm) covering most of the Thulium bandwidth and more than 8dBm output power ...We demonstrate a S/S+ band tunable thulium doped fiber laser (TTDFL) anchored on 50GHz ITU-T Grid. Over 57nm of tuning range (1454.9 ~ 1512.0 nm) covering most of the Thulium bandwidth and more than 8dBm output power has been obtained with the pigtailed solid etalon filter and dual wavelength (1.5μm and 1.4μm) pumping.展开更多
We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. T...We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. The laser resonator is a simple and compact linear cavity using two fiber end-facet mirrors. The SA is fabricated by Bi2Se3/polyvinyl alcohol composite film. By inserting the SA into the laser cavity, a stable Q-switching operation is achieved with the shortest pulse width and maximum pulse repetition rate of 601 ns and 205.2 kHz,respectively. The maximum average output power and maximum pulse energy obtained are about 6.6 mW and 38.8 nJ, respectively.展开更多
We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 ...We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 in a 75 μm cell with a homeotropic alignment layer. In the absence of an applied field, only amplified spontaneous emission was observed since the liquid crystal orientation was uniform. However, application of a field resulted in a fieldinduced planar-like configuration with local nonuniformity in liquid crystal orientation. This led to random lasing in the energized state(voltage greater than a transition threshold). The onset of lasing occurs by application of either a spatially homogenous or a spatially inhomogeneous electric field across the liquid crystal. The characteristics of the emission spectra as a function of different(i) dye concentration and(ii) applied voltage were investigated using nanosecond pulsed laser excitation at 532 nm. The effects of using an inhomogeneous field were compared to the use of a homogenous field and reported. It is shown that the spatial configuration can be used to alter the emission spectra of the system. The work is used to suggest a new configuration, referred to here as"reverse mode," for liquid crystal-based random lasers. This new configuration may provide additional avenues for their use in commercial devices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51971070,10974037,and 62205011)the National Key Research and Development Program of China(No.2016YFA0200403)+6 种基金Eu-FP7 Project(No.247644)CAS Strategy Pilot Program(No.XDA 09020300)Fundamental Research Funds for the Central Universities(No.buctrc202122)the Open Research Project of Zhejiang province Key Laboratory of Quantum Technology and Device(No.20220401)the Open Research Project of Special Display and Imaging Technology Innovation Center of Anhui Province(No.2022AJ05001)funded by the Ph.D Foundation of Hebei University of Water Resources and Electric Engineering(No.SYBJ2202)Funded by Science and Technology Project of Hebei Education Department(No.BJK2022027)。
文摘Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moderate defects have been discovered to exist memristive feature. However, it is very difficult to obtain moderate defect degree in 2D materials, and studied on modulation means and mechanism becomes urgent and essential. In this work, we realized memristive feature with a bipolar switching and a configurable on/off ratio in a two-terminal MoS_(2) device(on/off ratio ~100), for the first time, from absent to present using laser-modulation to few-layer defect-free MoS_(2)(about 10 layers), and its retention time in both high resistance state and low resistance state can reach 2×10^(4) s. The mechanism of the laser-induced memristive feature has been cleared by dynamic Monte Carlo simulations and first-principles calculations. Furthermore, we verified the universality of the laser-modulation by investigating other 2D materials of TMDs. Our work will open a route to modulate and optimize the performance of 2D semiconductor memristive devices.
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the Shanxi“1331 Project”Key Subjects Construction,China(Grant No.1331KSC).
文摘Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.
基金Funded by the International Science&Technology Cooperation Program of China(No.2011DFA52650)the"111"Project(No.B13035)+1 种基金the National Natural Science Foundation of China(No.51521001)the Fundamental Research Funds for the Central Universities
文摘Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.
文摘An all fiber wavelength selective Q switching modulator based on fiber grating loop mirror is proposed. A newly configured Q switched erbium doped fiber laser using this all fiber modulator is numerically analyzed taking into account the effects of the spontaneous emission.
基金Supported by the National Natural Science Foundation of China under Grant No 61735011the Natural Science Foundation of Hebei Province under Grant Nos F2016203389 and F2018105036+2 种基金the Science and Technology Research Project of College and University in Hebei Province under Grant No BJ2017108the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing under Grant No KDXS1107the Science and Technology Project of Tangshan City under Grant No 17130257a
文摘We experimentally demonstrate that a tunable supercontinuum(SC) can be generated in a Yb3+-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond(fs) laser as the pump.Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH-absorption at 1380 nm.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0205704 and 2018YFB2200101)the Natural Science Foundation of China (Grant Nos. 91964107 and U20A20209)provided by the Natural Science Foundation of China for Innovative Research Groups (Grant No. 61721005)
文摘Hyperdoping that introduces impurities with concentrations exceeding their equilibrium solubility has been attract-ing great interest since the tuning of semiconductor properties increasingly relies on extreme measures.In this review we fo-cus on hyperdoped silicon(Si)by introducing methods used for the hyperdoping of Si such as ion implantation and laser dop-ing,discussing the electrical and optical properties of hyperdoped bulk Si,Si nanocrystals,Si nanowires and Si films,and present-ing the use of hyperdoped Si for devices like infrared photodetectors and solar cells.The perspectives of the development of hy-perdoped Si are also provided.
基金Supported by the National Basic Research Programme of China under Grant No 2003CB314906, the National Natural Science Foundation of China under Grant No 60577045, and CERG Grant of the Hong Kong Government under Project 9040707.
文摘Dual wavelength high-frequency chaos based on nonlinear effects is generated in an erbium-doped fibre ring laser, where tunable filters (TFs) are used to select the wavelength. A receiving fibre laser with an open-loop structure is constructed with identical parameters as the transmitting fibre laser. By tuning the TFs and the fibre delay line in the receiving fibre laser, chaos synchronization has been observed at anyone the two wavelengths after the chaos is transmitted over 1 km. It is of far reaching importance to construct the high capacity chaos communication system.
基金Funded by the Natural Science Foundation of Guangdong Prov ince(013013) and the Science and Technology Plan of Guangdong Province(2002B11604)
文摘The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.
文摘During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.
文摘One challenge to the use of lightly-doped, high efficiency emitters on multicrystalline silicon wafers is the poor gettering efficiency of the diffusion processes used to fabricate them. With the photovoltaic industry highly reliant on heavily doped phosphorus diffusions as a source of gettering, the transition to selective emitter structures would require new alternative methods of impurity extraction. In this paper, a novel laser based method for gettering is investigated for available silicon wafers used its impact on commercially in the manufacturing of solar cells. Direct comparisons between laser enhanced gettering (LasEG) and lightly-doped emitter diffusion gettering demonstrate a 45% absolute improvement in bulk minority carrier lifetime when using the laser process. Although grain boundaries can be effective gettering sites in multicrystalline wafers, laser processing can substantially improve the performance of both grain boundary sites and intra-grain regions. This improvement is correlated with a factor of 6 further decrease in interstitial iron concentra- tions. The removal of such impurities from multicrystalline wafers using the laser process can result in intra-grain enhancements in implied open-circuit voltage of up to 40 mV. In instances where specific dopant profiles are required for a diffusion on one surface of a solar cell, and the diffusion process does not enable effective gettering, LasEG may enable improved gettering during the diffusion process.
文摘We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.
基金supported by Ministry of Higher Education under ERGS Grant scheme No.ER012-2012A
文摘A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.
文摘We demonstrate a S/S+ band tunable thulium doped fiber laser (TTDFL) anchored on 50GHz ITU-T Grid. Over 57nm of tuning range (1454.9 ~ 1512.0 nm) covering most of the Thulium bandwidth and more than 8dBm output power has been obtained with the pigtailed solid etalon filter and dual wavelength (1.5μm and 1.4μm) pumping.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61275050)the Project funded by the Department of Education of Guizhou Province(No.[2016]140)+3 种基金the Science and Technology Foundation of Guizhou Province(Nos.[2014]2124,[2010]2146,and[2009]06)the Science and Technology Plan Projects of Guizhou Province(No.SY2013[3055])the Science-Technology Union Foundation of Guizhou Province(No.[2014]7045)the International Science-Technology cooperation project of Guizhou Province of China(No.[2013]7019)
文摘We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. The laser resonator is a simple and compact linear cavity using two fiber end-facet mirrors. The SA is fabricated by Bi2Se3/polyvinyl alcohol composite film. By inserting the SA into the laser cavity, a stable Q-switching operation is achieved with the shortest pulse width and maximum pulse repetition rate of 601 ns and 205.2 kHz,respectively. The maximum average output power and maximum pulse energy obtained are about 6.6 mW and 38.8 nJ, respectively.
文摘We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 in a 75 μm cell with a homeotropic alignment layer. In the absence of an applied field, only amplified spontaneous emission was observed since the liquid crystal orientation was uniform. However, application of a field resulted in a fieldinduced planar-like configuration with local nonuniformity in liquid crystal orientation. This led to random lasing in the energized state(voltage greater than a transition threshold). The onset of lasing occurs by application of either a spatially homogenous or a spatially inhomogeneous electric field across the liquid crystal. The characteristics of the emission spectra as a function of different(i) dye concentration and(ii) applied voltage were investigated using nanosecond pulsed laser excitation at 532 nm. The effects of using an inhomogeneous field were compared to the use of a homogenous field and reported. It is shown that the spatial configuration can be used to alter the emission spectra of the system. The work is used to suggest a new configuration, referred to here as"reverse mode," for liquid crystal-based random lasers. This new configuration may provide additional avenues for their use in commercial devices.