期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
VIBRATION MEASUREMENT OF DOUBLE-ENDED TUNING FORKS RESONATOR
1
作者 LENG Changlin ZHANG Guoxiong +2 位作者 ZHONG Ying JIANG Chengzhi YU Fusheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期128-130,共3页
To enhance the coherence and reliability of the double-ended tuning fork (DETF) resonator, a measurement system of resonator vibration is presented to check its dynamic characteristics. Laser Doppler techniques are ... To enhance the coherence and reliability of the double-ended tuning fork (DETF) resonator, a measurement system of resonator vibration is presented to check its dynamic characteristics. Laser Doppler techniques are utilized and the relation between DETF vibration velocity and output current of photodetector is obtained. Resonator vibration equation is also analyzed and its driving power only depends on the direct current bias voltage and the amplitude of alternative voltage. Furthermore, a special resonator driving control circuit based on measurement is designed. The amplitude and frequency of circuit is controlled by a computer so that highly stable and strong driving signal can be output. Experiments on driving and measuring double-ended tuning fork have been done, The frequency of driving signal is 8 kHz and the peak-to-peak value of driving voltage is 140 V. Experimental results indicate resonator can be drived stably by driving control circuit and dynamic characteristics of DETF may be measured in real time. 展开更多
关键词 Resonator Optical measurement Tuning fork MEMS laser doppler
下载PDF
Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows 被引量:1
2
作者 魏文韫 朱家骅 +2 位作者 夏素兰 戴光清 高旭东 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期163-169,共7页
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity... Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation. 展开更多
关键词 supersonic gas-droplet two-phase flow interfacial momentum transfer velocity slip relaxation time numerical simulation laser doppler velocimeter measurement
下载PDF
An Experimental Investigation of the Dissipation Mechanisms in the Suction Side Boundary Layer of a Turbine Blade
3
作者 Francesca Satta Daniele Simoni +1 位作者 Marina Ubaldi Pietro Zunino 《Journal of Thermal Science》 SCIE EI CAS CSCD 2008年第4期289-297,共9页
The present work is part of an extensive experimental activity carried out by the authors in recent years aimed at investigating the boundary layer transition phenomenon in turbine blades. The large scale of the casca... The present work is part of an extensive experimental activity carried out by the authors in recent years aimed at investigating the boundary layer transition phenomenon in turbine blades. The large scale of the cascade and the use of advanced LDV instrumentation and precision probe traversing mechanism resulted in high degree of spatial resolution and high accuracy of measurements. The main dissipation mechanism determining the profile losses in turbomachinery blades is the work of deformation of the mean motion within the boundary layer operated by both viscous and turbulent shear stresses. In the present paper, the local viscous and turbulent deformation works have been directly evaluated from the detailed measurements of boundary layer mean velocity and Reynolds shear stress. The results show the distributions and the relative importance of the viscous and turbulent contributions to the loss production, in relation with the boundary layer states occurring along the turbine profile. 展开更多
关键词 Axial flow turbines Profile boundary layer Energy dissipation mechanism Boundary layer transition laser doppler measurements.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部