期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Effects of laser energy on the surface quality and properties of electrodeposited zinc-nickel-molybdenum coatings
1
作者 Tao Ni Zhaoyang Zhang +1 位作者 Yucheng Wu Shuai Yang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期18-26,共9页
As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted ele... As a substitute for toxic cadmium coatings in the aerospace industry,zinc-nickel coatings have excellent application prospects,and their properties can be improved by adding molybdenum.In this study,laser-assisted electrodeposition is used to improve the surface quality and properties of Zn–Ni–Mo coatings,with investigation of how laser energy in the range of 0–21.1μJ affects their element content,surface morphology,crystal phase,microhardness,residual internal stress,and corrosion resistance.The laser irradiation accelerates the electrodeposition,refines the grain size,improves the hydrogen adsorption,and reduces the residual tensile stress,and a laser energy of 15.4μJ gives the highest Ni and Mo contents and the lowest Zn content,as well as the optimum surface morphology,microhardness,residual internal stress,and corrosion resistance of the coating. 展开更多
关键词 ELECTRODEPOSITION laser energy Zn-Ni-Mo Surface quality Properties
下载PDF
Superior corrosion resistance-dependent laser energy density in(CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding 被引量:9
2
作者 Wen-rui Wang Wu Qi +4 位作者 Xiao-li Zhang Xiao Yang Lu Xie Dong-yue Li Yong-hua Xiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期888-897,共10页
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros... (CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings. 展开更多
关键词 high entropy alloy coating laser cladding technology laser energy density corrosion resistance
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:1
3
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
The second fusion of laser and aerospace-an inspiration for high energy lasers 被引量:1
4
作者 Xiaojun Xu Rui Wang Zining Yang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第6期52-60,共9页
Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket... Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers,which finally turned megawatt lasers from dream into reality.Nowadays,the development of HELs has entered the age of electricity as well as the rocket engines.The properties of current electric rocket engines are highly consistent with HELs’goals,including electrical driving,effective heat dissipation,little medium consumption and extremely light weight and size,which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.As an exploratory attempt,a new configuration of diode pumped metastable rare gas laser was demonstrated,with the gain generator resembling an electric rocket-engine for improved power scaling ability. 展开更多
关键词 high energy laser HEL gas dynamic laser alkali laser electric thruster metastable rare gas
下载PDF
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition
5
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
Selective Laser Melting of 30CrMnSiA Steel: Laser Energy Density Dependence of Microstructural and Mechanical Properties 被引量:1
6
作者 Lin-Zhi Wang Wen-Hou Wei 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第8期807-814,共8页
Three-dimensional parts of the 30 CrMnSiA steel were successfully fabricated using selective laser melting(SLM). The microstructures and mechanical properties of the SLM-processed 30 CrMnSiA samples were investigate... Three-dimensional parts of the 30 CrMnSiA steel were successfully fabricated using selective laser melting(SLM). The microstructures and mechanical properties of the SLM-processed 30 CrMnSiA samples were investigated by scanning electron microscope and transmission electron microscopy. The results indicate that the microstructures of the 30 CrMnSiA samples consist mainly of lath martensite and acicular martensite. The value of the surface roughness decreases with increasing laser energy density(LED) before it reaches a minimum and then increases with further increasing LED. The relative density, microhardness and ultimate tensile strength of the SLM-processed samples initially increase and then decrease with increasing LED. By taking the relative density, surface roughness, microhardness and ultimate tensile strength into account, the optimized LED should be in the range of 46.15–51.28 J mm^(-3) for the SLM-processed30 CrMnSiA alloys. In addition, the differences in the microstructures and mechanical properties between the conventionally wrought 30 CrMnSiA sample and SLM-processed 30 CrMnSiA samples were also studied. 展开更多
关键词 30CrMnSiA Selective laser melting laser energy density MICROSTRUCTURE Mechanical properties
原文传递
Application of laser energy deposition to improve performance for high speed intakes
7
作者 A.Russell M.Myokan +3 位作者 H.Bottini A.Sasoh H.Zare-Behtash K.Kontis 《Propulsion and Power Research》 SCIE 2020年第1期15-25,共11页
Research interest has been growing in recent years in supersonic transport,particularly supersonic propulsion systems.A key component of a commonly studied propulsion system,ramjets,is the air intake.For supersonic pr... Research interest has been growing in recent years in supersonic transport,particularly supersonic propulsion systems.A key component of a commonly studied propulsion system,ramjets,is the air intake.For supersonic propulsion systems a major factor in the overall efficiency is the intake pressure recovery.This refers to the ratio of the average total pressure after the intake to that of the freestream.One phenomenon that can have a large effect on this performance index is flow separation at the inlet.The aim of this work is to examine how pulsed laser energy deposition can be used to improve pressure recovery performance by reducing flow separation at the inlet.This research examines the effects of pulsed laser energy deposition upstream of an intake with an axisymmetric centrebody in a Mach 1.92 indraft wind tunnel.Laser frequency was varied between 1 and 60 kHz with an energy per pulse of 5.6 mJ.Schlieren photography was used to examine the fundamental fluid dynamics while total and static pressure downstream of the intake diffuser were measured to examine the resulting effect on the performance.Schlieren imaging shows that the interaction between the laser generated thermal bubble and the leading edge shock produced by the centrebody results in a significant reduction in separation along the intake cone.Analysis of the schlieren results and the pressure results in tandem illustrate that the average separation location along the length of the centrebody directly correlates to the pressure recovery observed in the intake.At the optimal laser frequency,found for this Mach number to be 10 kHz,the pressure recovery is found to increase by up to 4.7%.When the laser power added to the system is considered,this results in an overall increase in propulsive power of 2.47%. 展开更多
关键词 laser energy deposition SUPERSONIC Flow dynamics INTAKES Flow separation
原文传递
Study on the Antitumor Effects of Low-energy Laser Irradiation Combined with Cyclophosphamide 被引量:1
8
作者 HUANGBao-xu WANGHong-bin +3 位作者 QUZhi-na LIUHuan-qi LIUXi-feng CHENGShao-hui 《Journal of Northeast Agricultural University(English Edition)》 CAS 2003年第1期43-48,共6页
Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascite... Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%. 展开更多
关键词 Low energy laser irradiation (LELI) cyclophosphamide(CYT) antitumor effects mouse S180 ascites sarcoma
下载PDF
Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure,Laser Spectrum Bandwidth and Central Frequency
9
作者 程文静 梁果 +3 位作者 吴萍 贾天卿 孙真荣 张诗按 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期41-45,共5页
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control... The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications. 展开更多
关键词 TL Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the energy Level Structure laser Spectrum Bandwidth and Central Frequency
下载PDF
Spectral characteristic of laser-induced plasma in soil
10
作者 余洋 赵南京 +2 位作者 兰智高 孟德硕 马明俊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第1期74-79,共6页
The spectral characteristic of laser-induced plasma in soil was studied in this work,laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time... The spectral characteristic of laser-induced plasma in soil was studied in this work,laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time delays and irradianccs.Moreover,the time evolution characteristics of plasma temperature and electron density were discussed.Within the time delay range of 0-5μs,the spectral intensity of the characteristic lines of Si I:288.158 nm,Ti I:336.126 nm.Al I:394.400 nm and Fe I:438.354 nm of the four main elements in two kinds of national standard soil decayed exponentially with time.The average lifetime of the spectral lines was nearly 1.56μs.Under the condition of different time delays,the spectral intensity of Pb I:405.78 nm in soil increased linearly with laser energy.However,the slope between the spectral intensity and laser energy decreased exponentially with the increase in time delay,from 4.91 to 0.99 during 0-5μs.The plasma temperature was calculated by the Boltzmann plot method and the electron density was obtained by inversion of the full width at half maximum of the spectrum.The plasma temperature decreased from 8900 K to 7800 K and the electron density decreased from 1.5 x 1Ol7cm-3 to 7.8 x lO16cm-3 in the range of 0-5μs. 展开更多
关键词 LIBS.soil delay time laser energy plasma temperature electron density
下载PDF
A 61-mJ,1-kHz cryogenic Yb:YAG laser amplifier
11
作者 何会军 余军 +4 位作者 朱文涛 林庆典 郭晓杨 周沧涛 阮双琛 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期437-440,共4页
We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed... We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4. 展开更多
关键词 ytterbium laser system Yb:YAG laser amplifier cryogenic laser amplification high energy laser amplification
下载PDF
Thermal Physics and Statistical Mechanics Driven Inertial Confinement Fusion(ICF)Inducing a Controlled Thermonuclear Energy
12
作者 Bahman Zohuri Farahnaz Behgounia Masoud J.Moghaddam 《Journal of Energy and Power Engineering》 2021年第1期20-38,共19页
In the 1970s,scientists began experimenting with powerful laser beams to compress and heat the hydrogen isotopes to the point of fusion,a technique called ICF(Inertial Confinement Fusion).In the“direct drive”approac... In the 1970s,scientists began experimenting with powerful laser beams to compress and heat the hydrogen isotopes to the point of fusion,a technique called ICF(Inertial Confinement Fusion).In the“direct drive”approach to ICF,powerful beams of laser light are focused on a small spherical pellet containing micrograms of deuterium and tritium.The rapid heating caused by the laser“driver”makes the outer layer of the target explode.In keeping with Isaac Newton’s Third Law“For every action,there is an equal and opposite reaction”,the remaining portion of the target is driven inwards in a rocket-like implosion,causing compression of the fuel inside the capsule and the formation of a shock wave,which further heats the fuel in the very center and results in a self-sustaining burn.The fusion burn propagates outward through the cooler,outer regions of the capsule much more rapidly than the capsule can expand.Instead of magnetic fields,the plasma is confined by the inertia of its own mass—hence the term inertial confinement fusion.A similar process can be observed on an astrophysical scale in stars and the terrestrial uber world,that have exhausted their nuclear fuel,hence inertially or gravitationally collapsing and generating a supernova explosion,where the results can easily be converted to induction of energy in control forms for a peaceful purpose(i.e.,inertial fusion reaction)by means of thermal physics and statistical mechanics behavior of an ideal Fermi gas,utilizing Fermi-Degeneracy and Thomas-Fermi theory.The fundamental understanding of thermal physics and statistical mechanics enables us to have a better understanding of Fermi-Degeneracy as well as Thomas-Fermi theory of ideal gas,which results in laser compressing matter to a super high density for purpose of producing thermonuclear energy in way of controlled form for peaceful shape and form i.e.CTR(Controlled Thermonuclear Reaction).In this short review,we have concentrated on Fundamental of State Equations by driving them as it was evaluated in book Statistical Mechanics written by Mayer,J.and Mayer,M.in this article. 展开更多
关键词 RENEWABLE nonrenewable source of energy fusion reactors super high density matter laser driven fusion energy Fermi-Degeneracy Thomas-Fermi theory return on investment total cost of ownership
下载PDF
Microstructure and Mechanical Properties of an Ultrahigh-strength Titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb Prepared Using Laser Directed Energy Deposition and Forging:A Comparative Study 被引量:1
13
作者 Junwei Yang Haibo Tang +4 位作者 Peiyuan Wei Hongwei Gao Jiawei Wang Haixin Huo Yanyan Zhu 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第1期55-66,共12页
The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,rese... The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy. 展开更多
关键词 Ultrahigh-strength titanium alloy laser directed energy deposition TB18 Microstructure Tensile properties Heat treatment
原文传递
Effect of Aging Parameters on Inconel 718 Fabricated by Laser Directed Energy Deposition
14
作者 Nataniel Yong Syn Tham Grace Rui Si Tay +2 位作者 Bingqing Yao Kaiqiang Wu ZhiLi Dong 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第4期112-121,共10页
Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to ach... Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment. 展开更多
关键词 Inconel 718 laser directed energy deposition Heat treatment Microstructure Additive manufacturing
原文传递
Investigation on the Cracking Mechanism of Melt Growth Alumina/Aluminum Titanate Ceramics Prepared by Laser Directed Energy Deposition
15
作者 Yunfei Huang Dongjiang Wu +4 位作者 Chengxin Li Weijie Lv Guangyi Ma Cong Zhou Fangyong Niu 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第4期23-32,共10页
Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high... Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED. 展开更多
关键词 Additive manufacturing laser directed energy deposition Composite ceramics Alumina/aluminum titanate Cracking mechanism
原文传递
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials 被引量:1
16
作者 Jin ZHANG Xuefeng HUANG +3 位作者 Xinzhen KANG Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique 被引量:3
17
作者 MengCheng Deng Shang Sui +3 位作者 Bo Yao Liang Ma Xin Lin Jing Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期308-320,共13页
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d... Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last. 展开更多
关键词 laser directed energy deposition Near-αtitanium alloy Equiaxedβgrain Room-temperature tensile property
原文传递
Laser Properties of Nd_2O_3 Doped Na_2O–CaO–SiO_2 Transparent Glass-Ceramics for Space Solar Energy 被引量:3
18
作者 Shuming Wang Fenghua Kuang +3 位作者 Qing Ye Yanxin Wang Minghui Tang Changchun Ge 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第6期583-586,共4页
A series of Na20-CaO-SiO2 glass ceramics containing different content of Nd3+ ions were prepared by the method of high temperature melting and subsequent crystallization. The absorption, excitation and emis- sion spe... A series of Na20-CaO-SiO2 glass ceramics containing different content of Nd3+ ions were prepared by the method of high temperature melting and subsequent crystallization. The absorption, excitation and emis- sion spectra of these glass ceramics were investigated; effects of Nd3+ content and crystallization behavior on the laser properties of this material had been studied. The results show that the emission bands origi- nating from the 4F3/2 state of Nd3+ were firstly enhanced with the increase of the Nd2O3 doping content and the crystallinity degree, and then decreased with more doping content and deepened crystalliza- tion. The possible reasons of this phenomenon were analyzed. Research will be favored to promote the development of glass ceramics laser materials for space solar energy. 展开更多
关键词 Transparent glass-ceramics laser property Space solar energy
原文传递
Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition
19
作者 Yong Xie Zhixin Xia +3 位作者 Jixin Hou Jiachao Xu Peng Chen Le Wan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1591-1600,共10页
CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with inc... CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy. 展开更多
关键词 Medium-entropy alloys Mechanical properties laser directed energy deposition Misfit dislocations Cu-rich phase
原文传递
Microstructural evolution and hardness of as-cast Be-Al-Sc-Zr alloy processed by laser surface remelting 被引量:4
20
作者 Qingdong XU Yu LUO +7 位作者 Xiangdong LIU Lei YANG Shixiong HE Xin WANG Wenyuan WANG Tao SHI Ruiwen LI Pengcheng ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期131-142,共12页
As-cast beryllium-aluminum(Be-Al)alloy exhibits a coarse microstructure with pore defects due to a large solidification interval,greatly limiting its mechanical properties.In this research,the relationship between las... As-cast beryllium-aluminum(Be-Al)alloy exhibits a coarse microstructure with pore defects due to a large solidification interval,greatly limiting its mechanical properties.In this research,the relationship between laser surface remelting process and microstructure and hardness of as-cast Be-Al-Sc-Zr alloy was established.The experimental results demonstrated that a pore-free refined microstructure of remelted layer was obtained by controlling the parameter of effective laser energy input.The microstructure of as-cast Be-Al-Sc-Zr alloy consisted of equiaxed grains with Al phase forming a continuous frame wrapping Be phase,which was significantly refined in the remelted zone(from 25μm to 2μm).The Vickers hardness in the remelted zone(approximately 210 HV)was approximately 3 times that of as-cast Be-Al-Sc-Zr alloy.Analysis of the Vickers hardness and the Be phase size showed a good agreement with a Hall-Petch equation.In addition,transmission electron microscopy(TEM),auger electron spectroscopy(AES)and X-ray diffraction(XRD)analysis evidenced that Sc and Zr elements formed a single blocky phase Be13(Scx,Zr1-x),which was also greatly refined from 8μm to 1.5μm in the remelted zone.The results obtained in this study indicate that the laser surface remelting allowed refining the microstructure and further strengthening the Vickers hardness of Be-Al-Sc-Zr alloy. 展开更多
关键词 Be-Al alloy laser energy input laser surface remelting HARDNESS Microstructure
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部