This paper deals with the interaction of femtosecond laser with strain dependent high dielectric material. For this investigation, ferroelectric material like BaTiO<sub>3</sub> has been chosen because of c...This paper deals with the interaction of femtosecond laser with strain dependent high dielectric material. For this investigation, ferroelectric material like BaTiO<sub>3</sub> has been chosen because of centrosymmetric structure. Due to irradiation of laser light, the micro-structure of BaTiO<sub>3</sub> is found to change along the direction of heat propagation. SEM and AFM tools have been used to detect the morphology and roughness of the femotosecond laser treated BaTiO<sub>3</sub>. The change of morphology and surface behavior depends upon the laser fluence and intensity of laser light. The maximum change in morphology has been observed at a higher laser fluence.展开更多
文摘This paper deals with the interaction of femtosecond laser with strain dependent high dielectric material. For this investigation, ferroelectric material like BaTiO<sub>3</sub> has been chosen because of centrosymmetric structure. Due to irradiation of laser light, the micro-structure of BaTiO<sub>3</sub> is found to change along the direction of heat propagation. SEM and AFM tools have been used to detect the morphology and roughness of the femotosecond laser treated BaTiO<sub>3</sub>. The change of morphology and surface behavior depends upon the laser fluence and intensity of laser light. The maximum change in morphology has been observed at a higher laser fluence.