With preheating wire by resistance heat, laser hot wire welding improves process stability and wire deposition efficiency, which gives broad potential applications in sugracing and narrow gap welding. It is a critical...With preheating wire by resistance heat, laser hot wire welding improves process stability and wire deposition efficiency, which gives broad potential applications in sugracing and narrow gap welding. It is a critical issue to control the temperature of preheated wire in this process. The temperature which is so high that the wire fuses outside molten pool or so low that the wire cannot melt timely in the molten pool, results in poor wire transfer stability and bad weld formation. This paper is purposed to calculate the wire temperature for the prediction of wire transfer behavior under various welding parameters. A heat conduction model is set up. Heat sources of the wire include resistance heat and reflected laser, and the heat source of molten pool is laser. The calculated temperature of wire part outside the molten pool is verified by infrared ratio temperature measurement. The calculated temperature of wire part in the molten pool is verified by measurement of the molten pool size. Analyzing the wire temperature and welding process observed by the high speed video imaging, the temperature criteria of wire transfer behaviors are obtained. Thus, numerical simulation of the wire temperature can be used to predict wire transfer behaviors in laser hot wire welding.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51005125 ) and National Basic Research Program of China (Grant No. 2011CB013404).
文摘With preheating wire by resistance heat, laser hot wire welding improves process stability and wire deposition efficiency, which gives broad potential applications in sugracing and narrow gap welding. It is a critical issue to control the temperature of preheated wire in this process. The temperature which is so high that the wire fuses outside molten pool or so low that the wire cannot melt timely in the molten pool, results in poor wire transfer stability and bad weld formation. This paper is purposed to calculate the wire temperature for the prediction of wire transfer behavior under various welding parameters. A heat conduction model is set up. Heat sources of the wire include resistance heat and reflected laser, and the heat source of molten pool is laser. The calculated temperature of wire part outside the molten pool is verified by infrared ratio temperature measurement. The calculated temperature of wire part in the molten pool is verified by measurement of the molten pool size. Analyzing the wire temperature and welding process observed by the high speed video imaging, the temperature criteria of wire transfer behaviors are obtained. Thus, numerical simulation of the wire temperature can be used to predict wire transfer behaviors in laser hot wire welding.