The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and ...The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically.Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence.展开更多
The effects of re-scattering on the supra-thermal electron (STE) produced in moderate laser fields are analytically considered (laser intensity is up to ) with a simple model. The electron kinetic energy distribution...The effects of re-scattering on the supra-thermal electron (STE) produced in moderate laser fields are analytically considered (laser intensity is up to ) with a simple model. The electron kinetic energy distribution given by the model is consistent to that given by the particle-in-cell simulation. Based on this fact, it is shown that the scattering of electron in intense laser by the ion in plasma plays an important role in the generation of STE in a moderate laser field.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
A pair of copper bromide lasers in an oscillator–amplifier configuration is used to investigate the small signal gain and saturation intensity as amplifying parameters and output power of lasers, versus pressure of b...A pair of copper bromide lasers in an oscillator–amplifier configuration is used to investigate the small signal gain and saturation intensity as amplifying parameters and output power of lasers, versus pressure of buffer gas. It is shown that the amplifying parameters and laser output power have a maximum value at optimum buffer gas pressure of 11?Torr. The challenge between microscopic parameters such as stimulated emission cross section, laser upper level lifetime, and population inversion, which determine the values of laser characteristics respective to the operational pressure of buffer gas, are investigated. Thus an optimum delay time of about 10?ns is determined, and a maximum output power equivalent to about 12?W is extracted. The amplifying parameters and measured output power of laser versus delay times show some local maxima and minima at the delay time interval of 6–43?ns.展开更多
The dynamics of low-β magnetic reconnection(MR) driven by laser interaction with a capacitor–coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR(also referred as AP-case and P...The dynamics of low-β magnetic reconnection(MR) driven by laser interaction with a capacitor–coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR(also referred as AP-case and P-case standing for the anti-parallel and parallel magnetic field lines, respectively) to distinguish the different characteristics between them.We find that only in the AP-case the reconnection electric field shows up around the X line and the electron jet is directed toward the X line. The quadruple magnetic fields exist in both cases, however, they distribute in the current sheet area in the AP-case, and out of the squeezing area in the P-case, because electrons are demagnetized in the electron diffusion region in the MR process, which is absent in the P-case. The electron acceleration is dominant by the Fermi-like mechanism before the MR process, and by the reconnection electric field when the MR occurs. A power-law electron energy spectrum with an index of 1.8 is found in the AP-case. This work proves the significant potential of this experimental platform to be applied in the studies of low-β astronomy phenomena.展开更多
The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by consider...The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by considering the Heisenberg–Euler Lagrangian density of two laser processes. Comparing the corrections of vacuum polarization effects in the collision of laser beams with one generated by a single intense laser, we find that the former has a higher order of magnitude correction. The laser collision also produces variations in the propagation direction and polarization direction of the lasers propagating in the plasma. In addition, the strong-field quantum electrodynamic(QED) effects can be enhanced by increasing the laser intensity or frequency difference, or by adjusting the incident angles of the two laser beams.展开更多
A study is presented of the laser welding behaviour of an SiC particulate re-inforced Al-alloy comPOsite using a pulsed Nd-YAG laser. The influences of laser weldingparameters of laser intensity, pulse duration and th...A study is presented of the laser welding behaviour of an SiC particulate re-inforced Al-alloy comPOsite using a pulsed Nd-YAG laser. The influences of laser weldingparameters of laser intensity, pulse duration and the beamjs focus position on the depth ofweld penetration as well as the size of weld bead width were investigated. A typical mi-crostructure of a weld section reveals that the three distinct zones are present. Cracks andporosity were fOund to be two major defects in laser welded metal matrix composites(MMC). These investigations have led to an optimum welding condition proposed forlaser welding of SiC partiulate reinforced aluminium alloy comPosites with minimum de-fects.展开更多
Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for th...Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for the NO molecule upon interaction with 800 nm intense laser radiation of duration 60 fs and intensity 0.2 PW/cm^2. Intense laser pulse causes neutral dissociation of superexcited NO molecule by way of multiphoton excitation, which is equivalent to single photon excitation in the extreme-ultraviolet region by synchrotron radiation. Potential energy curves (PECs) are also built using the calculated superexcited state of NO^+. In light of the PECs, direct dissociation and pre-dissociation mechanisms are proposed respectively for the neutral dissociation leading to excited fragments N^* and O^*.展开更多
This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production...This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.展开更多
We report a discovery that an intense few-cycle laser pulse passing through gas leaves a fingerprint of its field en- velope on the photoelectron energy spectrum, which involves continuous X-ray radiations. The spectr...We report a discovery that an intense few-cycle laser pulse passing through gas leaves a fingerprint of its field en- velope on the photoelectron energy spectrum, which involves continuous X-ray radiations. The spectrum resulting from the photoionization processes includes significant quantum enhancement and interference and exhibits interesting energetic properties. The spectral cut-off energies reflect the strength, time, and interference of the laser field modulation on the photoelectron energy. These energetic properties suggest a new method for precise intense-laser-pulse measurement in situ. The method has the advantages of accuracy, simplicity, speed, and large dynamic ranges (up to many orders of intensity).展开更多
The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational l...The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schrbdinger equation with the split- operator method. The calculation shows that the field parameters, such as intensity, wavelength, duration, and delay time etc. can have different influences on the vibrational population. By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state, which will benefit the light manipulation of atomic and molecular processes.展开更多
Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the...Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of 6{ }^1/Sigma ^ + state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes.展开更多
Using a neutral N2 beam as target, this paper studies the dissociation of N2^+ in intense femtosecond laser fields (45 fs, ~ 1 × 10^16 W/cm^2) at the laser wavelength of 800 nm based on the time-of-flight mas...Using a neutral N2 beam as target, this paper studies the dissociation of N2^+ in intense femtosecond laser fields (45 fs, ~ 1 × 10^16 W/cm^2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N+ fragment ions. The angular distributions of N^+ and the laser power dependence of N^+ yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states (A, B and C) and the upper excited states of N^+.A coupling model of light-dressed potential energy curves of N2^+ is used to interpret the kinetic energy release of N^+.展开更多
By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser h...By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.展开更多
We propose a simple pump-coupling-seed scheme to examine the optical X^2Σg^+–A^2Πu coupling in N2^+ lasing. We produce the N2^+ lasing at 391 nm, corresponding to the B^2Σu^+(v = 0)–X^2Σg+(v = 0) transition, by ...We propose a simple pump-coupling-seed scheme to examine the optical X^2Σg^+–A^2Πu coupling in N2^+ lasing. We produce the N2^+ lasing at 391 nm, corresponding to the B^2Σu^+(v = 0)–X^2Σg+(v = 0) transition, by externally seeding the N^2+ gain medium prepared by irradiation of N2 with an intense pump pulse. We then adopt a weak coupling pulse in between the pump and seed pulses, and show that the intensity of the 391-nm lasing can be efficiently modulated by varying the polarization direction of the coupling pulse with respect to that of the pump pulse. It is found that when the polarization directions of the pump and coupling pulses are perpendicular, the 391-nm lasing intensity is more sensitive to the coupling laser energy, which reflects the inherent nature of the perpendicular X^2+Σg^–A^2Πu transition.展开更多
We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Ter...We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Terent'ev (PPT) theory, and the Ammosov-Delone-Krainov (ADK) theory. Our results show that laser intensity dependent ionization probabilities of several atoms (i.e., H, He, and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes, while the ADK results fit well to the TDSE data only in the tunneling ionization regime. Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm, 800 nm, and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE, while the ADK theory fails to give the wavelength dependence of ionization probability. Only when the laser wavelength is long enough, will the results of ADK be close to those of TDSE.展开更多
The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which t...The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.展开更多
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa...The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.展开更多
We show that in the quantum transition of an atom interacting with an intense laser of circular frequency ω, the energy difference between the initial and the final states of the atom is not necessarily an integer mu...We show that in the quantum transition of an atom interacting with an intense laser of circular frequency ω, the energy difference between the initial and the final states of the atom is not necessarily an integer multiple of the quantum energy hω. This kind of non-integer transition is a true non-perturbation effect in laser-atom interaction.展开更多
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT160R7
文摘The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically.Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence.
文摘The effects of re-scattering on the supra-thermal electron (STE) produced in moderate laser fields are analytically considered (laser intensity is up to ) with a simple model. The electron kinetic energy distribution given by the model is consistent to that given by the particle-in-cell simulation. Based on this fact, it is shown that the scattering of electron in intense laser by the ion in plasma plays an important role in the generation of STE in a moderate laser field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
文摘A pair of copper bromide lasers in an oscillator–amplifier configuration is used to investigate the small signal gain and saturation intensity as amplifying parameters and output power of lasers, versus pressure of buffer gas. It is shown that the amplifying parameters and laser output power have a maximum value at optimum buffer gas pressure of 11?Torr. The challenge between microscopic parameters such as stimulated emission cross section, laser upper level lifetime, and population inversion, which determine the values of laser characteristics respective to the operational pressure of buffer gas, are investigated. Thus an optimum delay time of about 10?ns is determined, and a maximum output power equivalent to about 12?W is extracted. The amplifying parameters and measured output power of laser versus delay times show some local maxima and minima at the delay time interval of 6–43?ns.
基金the National Natural Science Foundation of China (Grant No. 11875092)。
文摘The dynamics of low-β magnetic reconnection(MR) driven by laser interaction with a capacitor–coil target are reexamined by simulations in this paper. We compare two cases MR and non-MR(also referred as AP-case and P-case standing for the anti-parallel and parallel magnetic field lines, respectively) to distinguish the different characteristics between them.We find that only in the AP-case the reconnection electric field shows up around the X line and the electron jet is directed toward the X line. The quadruple magnetic fields exist in both cases, however, they distribute in the current sheet area in the AP-case, and out of the squeezing area in the P-case, because electrons are demagnetized in the electron diffusion region in the MR process, which is absent in the P-case. The electron acceleration is dominant by the Fermi-like mechanism before the MR process, and by the reconnection electric field when the MR occurs. A power-law electron energy spectrum with an index of 1.8 is found in the AP-case. This work proves the significant potential of this experimental platform to be applied in the studies of low-β astronomy phenomena.
基金supported by the National Natural Science Foundation of China (Grant No. 11805117)the Shanghai Leading Academic Discipline Project (Grant No. S30105)。
文摘The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by considering the Heisenberg–Euler Lagrangian density of two laser processes. Comparing the corrections of vacuum polarization effects in the collision of laser beams with one generated by a single intense laser, we find that the former has a higher order of magnitude correction. The laser collision also produces variations in the propagation direction and polarization direction of the lasers propagating in the plasma. In addition, the strong-field quantum electrodynamic(QED) effects can be enhanced by increasing the laser intensity or frequency difference, or by adjusting the incident angles of the two laser beams.
文摘A study is presented of the laser welding behaviour of an SiC particulate re-inforced Al-alloy comPOsite using a pulsed Nd-YAG laser. The influences of laser weldingparameters of laser intensity, pulse duration and the beamjs focus position on the depth ofweld penetration as well as the size of weld bead width were investigated. A typical mi-crostructure of a weld section reveals that the three distinct zones are present. Cracks andporosity were fOund to be two major defects in laser welded metal matrix composites(MMC). These investigations have led to an optimum welding condition proposed forlaser welding of SiC partiulate reinforced aluminium alloy comPosites with minimum de-fects.
文摘Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for the NO molecule upon interaction with 800 nm intense laser radiation of duration 60 fs and intensity 0.2 PW/cm^2. Intense laser pulse causes neutral dissociation of superexcited NO molecule by way of multiphoton excitation, which is equivalent to single photon excitation in the extreme-ultraviolet region by synchrotron radiation. Potential energy curves (PECs) are also built using the calculated superexcited state of NO^+. In light of the PECs, direct dissociation and pre-dissociation mechanisms are proposed respectively for the neutral dissociation leading to excited fragments N^* and O^*.
基金supported by the National Natural Science Foundation of China(Grant No.11175010)
文摘This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.
基金supported by the National Natural Science Foundation of China(Grant No.11175010)
文摘We report a discovery that an intense few-cycle laser pulse passing through gas leaves a fingerprint of its field en- velope on the photoelectron energy spectrum, which involves continuous X-ray radiations. The spectrum resulting from the photoionization processes includes significant quantum enhancement and interference and exhibits interesting energetic properties. The spectral cut-off energies reflect the strength, time, and interference of the laser field modulation on the photoelectron energy. These energetic properties suggest a new method for precise intense-laser-pulse measurement in situ. The method has the advantages of accuracy, simplicity, speed, and large dynamic ranges (up to many orders of intensity).
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2006A23)the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)
文摘The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schrbdinger equation with the split- operator method. The calculation shows that the field parameters, such as intensity, wavelength, duration, and delay time etc. can have different influences on the vibrational population. By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state, which will benefit the light manipulation of atomic and molecular processes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10604045)
文摘Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of 6{ }^1/Sigma ^ + state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774033,60878018 and 10674036)program for New Century Excellent Talents in University of China (NCET)
文摘Using a neutral N2 beam as target, this paper studies the dissociation of N2^+ in intense femtosecond laser fields (45 fs, ~ 1 × 10^16 W/cm^2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N+ fragment ions. The angular distributions of N^+ and the laser power dependence of N^+ yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states (A, B and C) and the upper excited states of N^+.A coupling model of light-dressed potential energy curves of N2^+ is used to interpret the kinetic energy release of N^+.
基金financially supported by the National Natural Science Foundation of China(Nos.11475260,11305264,11622547,91230205,and 11474360)the National Basic Research Program of China(No.2013CBA01504)the Research Project of NUDT(No.JC14-02-02)
文摘By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61625501,11904121,and 61427816)the Open Fund of the State Key Laboratory of High Field Laser Physics(SIOM),China+1 种基金the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT),China(Grant No.2017TD-21)Fundamental Research Funds for the Central Universities of China
文摘We propose a simple pump-coupling-seed scheme to examine the optical X^2Σg^+–A^2Πu coupling in N2^+ lasing. We produce the N2^+ lasing at 391 nm, corresponding to the B^2Σu^+(v = 0)–X^2Σg+(v = 0) transition, by externally seeding the N^2+ gain medium prepared by irradiation of N2 with an intense pump pulse. We then adopt a weak coupling pulse in between the pump and seed pulses, and show that the intensity of the 391-nm lasing can be efficiently modulated by varying the polarization direction of the coupling pulse with respect to that of the pump pulse. It is found that when the polarization directions of the pump and coupling pulses are perpendicular, the 391-nm lasing intensity is more sensitive to the coupling laser energy, which reflects the inherent nature of the perpendicular X^2+Σg^–A^2Πu transition.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11044007,11164025,and 11064013)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos.20096203110001 and 20116203120001)the Foundation of Northwest Normal University,China (Grant No. NWNU-KJCXGC-03-62)
文摘We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Terent'ev (PPT) theory, and the Ammosov-Delone-Krainov (ADK) theory. Our results show that laser intensity dependent ionization probabilities of several atoms (i.e., H, He, and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes, while the ADK results fit well to the TDSE data only in the tunneling ionization regime. Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm, 800 nm, and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE, while the ADK theory fails to give the wavelength dependence of ionization probability. Only when the laser wavelength is long enough, will the results of ADK be close to those of TDSE.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB806000)the National Natural Science Foundation of China (Grant No 10535070)
文摘The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.
文摘The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8×10^6Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 × 10^16W/cm^2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
基金The project supported by National Natural Science Foundation of China under Grant No. 10305001
文摘We show that in the quantum transition of an atom interacting with an intense laser of circular frequency ω, the energy difference between the initial and the final states of the atom is not necessarily an integer multiple of the quantum energy hω. This kind of non-integer transition is a true non-perturbation effect in laser-atom interaction.