期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
1
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
2
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Evolution of microstructure and mechanical properties in multi-layer 316L-TiC composite fabricated by selective laser melting additive manufacturing
3
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TASCI Elina AKBARZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2973-2991,共19页
In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,... In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles. 展开更多
关键词 multilayer metal-ceramic composites selective laser melting functionally graded materials 316 L stainless steel TIC
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
4
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Selective Laser Melting of Novel SiC and TiC Strengthen 7075 Aluminum Powders for Anti-Cracks Application
5
作者 Yingjie Li Hanlin Liao 《Journal of Materials Science and Chemical Engineering》 2024年第4期136-142,共7页
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric... The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. . 展开更多
关键词 Selective laser melting (SLM) AA 7075 Fine Grain Strengthen TiC SIC Green laser
下载PDF
Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components 被引量:2
6
作者 陈昌荣 刘畅 +4 位作者 王乾廷 练国富 黄旭 冯美艳 戴继成 《China Welding》 CAS 2023年第3期51-66,共16页
Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-lay... Due to the layer-by-layer manufacturing characteristics,metallurgical process of selective laser melting(SLM)is inherently dif-ferent in the building direction because of varying conditions,thereby resulting inter-layer heterogeneity.To mitigate such anisotropy,it is of great significance to understand the effects of processing parameters on the property evolution and thus metallurgy of fabrication process.This research proposes one-factor-at-a-time experiment to investigate the influences of laser power and scanning speed on the surface qual-ity,microstructures and mechanical properties of selective laser melted Ti-6Al-4V parts.Surface quality is assessed by roughness around the printings while mechanical properties are evaluated through microhardness and tensile strengths.Phases in microstructure are quantified by XRD to correlate with mechanical properties.Fracture morphology is analyzed to understand the effect of defects and microstructure on mechanical performance.The optimized parameter corresponding to best surface quality and mechanical properties has been found respect-ively in laser power of 190 W and scanning speed of 800 mm/s.After optimization,surface roughness has decreased by 44.47%for upper surface.Yielding strength,tensile strength and elongation rate have improved by 13.17%,43.34%and 64.51%,respectively,with similar hardness and Young’s modulus.In addition,heterogeneity of mechanical properties has great improvement by a range of 31.63%-92.68%. 展开更多
关键词 selective laser melting TI-6AL-4V inter-layer heterogeneity tensile properties heat input
下载PDF
Microstructure,Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
7
作者 Wenbin Ji Chuncheng Liu +1 位作者 Shijie Dai Riqing Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期91-105,共15页
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL... To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation. 展开更多
关键词 Selective laser melting High-speed steel Mechanical properties MICROSTRUCTURE Interlaminar cracks
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
8
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 Surface integrity Inconel 738LC Selective laser melting High-speed milling
下载PDF
Topology optimization of microstructure and selective laser meltingfabrication for metallic biomaterial scaffolds 被引量:12
9
作者 肖冬明 杨永强 +2 位作者 苏旭彬 王迪 罗子艺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2554-2561,共8页
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ... The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds. 展开更多
关键词 topology optimization selective laser melting (SLM) MICROSTRUCTURE metallic biomaterial scaffolds
下载PDF
Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy 被引量:7
10
作者 任海水 田象军 +2 位作者 刘栋 刘健 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1856-1864,共9页
A rectangular plate of Ti-6.5A1-3.5Mo-I.5Zr-0.3Si titanium alloy was fabricated by laser melting deposition (LMD) technology. Macrostructure and microstructure were characterized by optical microscope (OM) and sca... A rectangular plate of Ti-6.5A1-3.5Mo-I.5Zr-0.3Si titanium alloy was fabricated by laser melting deposition (LMD) technology. Macrostructure and microstructure were characterized by optical microscope (OM) and scanning electron microscope (SEM). Room temperature tensile properties were evaluated. Results indicate that the macro-morphology is dominated by large columnar grains traversing multiple deposited layers. Two kinds of bands, named the wide bands and the narrow bands, are observed. The wide band consists of crab-like a lath and Widmanstatten a colony. The narrow band consists of a lath and transformed ft. The formation mechanism of the two bands was explored. The influence of heat effect caused by subsequent deposition layers on microstructural evolution during deposition process was discussed. The room temperature tensile test demonstrates that the strength of laser deposited Ti-6.5A1-3.5Mo-I.5Zr-0.3Si is comparable to that of wrought bars. 展开更多
关键词 titanium alloy MICROSTRUCTURE tensile properties laser melting deposition
下载PDF
Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy 被引量:7
11
作者 李真 田象军 +1 位作者 汤海波 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2591-2597,共7页
Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was ... Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was obtained by double annealed treatment, and inhomogeneous grain boundaryαphase was detected. Fatigue fracture surfaces and longitudinal sections of LCF specimens were examined by optical microscopy and scanning electron microscopy. Results indicate that more than one crack initiation site can be detected on the LCF fracture surface. The fracture morphology of the secondary crack initiation site is different from that of the primary crack initiation site. When the crack grows along the grain boundaryαphase, continuous grain boundaryαphase leads to a straight propagating manner while discontinuous grain boundaryαphase gives rise to flexural propagating mode. 展开更多
关键词 titanium alloy low cycle fatigue laser melting deposition
下载PDF
Defect Formation Mechanisms in Selective Laser Melting:A Review 被引量:67
12
作者 Bi Zhang Yongtao Li Qian Bai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期515-527,共13页
Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classifi... Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM. 展开更多
关键词 Selective laser melting Process parameters -Defect Mechanical properties
下载PDF
A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting 被引量:39
13
作者 Pei WANG Jürgen ECKERT +4 位作者 Konda-gokuldoss PRASHANTH Ming-wei WU Ivan KABAN Li-xia XI Sergio SCUDINO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2001-2034,共34页
Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important m... Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important materials for various applications due to the combined properties of Al matrix and reinforcements.Considering the advantages of SLM technology and PAMCs,the novel SLM PAMCs have been developed and researched in recent years.Therefore,the current research progress about the SLM PAMCs is reviewed.Firstly,special attention is paid to the solidification behavior of SLM PAMCs.Secondly,the important issues about the design and fabrication of high-performance SLM PAMCs,including the selection of reinforcement,the influence of parameters on the processing and microstructure,the defect evolution and phase control,are highlighted and discussed comprehensively.Thirdly,the performance and strengthening mechanism of SLM PAMCs are systematically figured out.Finally,future directions are pointed out on the advancement of high-performance SLM PAMCs. 展开更多
关键词 selective laser melting aluminum matrix composites solidification behavior MICROSTRUCTURE PROPERTIES
下载PDF
Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting 被引量:18
14
作者 F.BARTOLOMEU M.BUCIUMEANU +4 位作者 E.PINTO N.ALVES F.S.SILVA O.CARVALHO G.MIRANDA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期829-838,共10页
The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different... The aim of this work was to study the influence of the processing route on the microstructural constituents,hardness andtribological(wear and friction)behavior of Ti6Al4V biomedical alloy.In this sense,three different processing routes were studied:conventional casting,hot pressing and selective laser melting.A comprehensive metallurgical,mechanical and tribologicalcharacterization was performed by X-ray diffraction analysis,Vickers hardness tests and reciprocating ball-on-plate wear tests ofTi6Al4V/Al2O3sliding pairs.The results showed a great influence of the processing route on the microstructural constituents andconsequent differences on hardness and wear performance.The highest hardness and wear resistance were obtained for Ti6Al4Valloy produced by selective laser melting,due to a markedly different cooling rate that leads to significantly different microstructurewhen compared to hot pressing and casting.This study assesses and confirms that selective laser melting is potential to producecustomized Ti6Al4V implants with improved wear performance. 展开更多
关键词 biomedical alloy Ti6Al4V alloy wear behavior MICROSTRUCTURE selective laser melting hot pressing CASTING
下载PDF
Effect of Nb additions on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting 被引量:16
15
作者 Adam ISMAEEL Cun-shan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1007-1016,共10页
The γ-TiAl based Ti.Al.Mn.Nb alloys with different Nb additions were fabricated by selective laser melting (SLM) on the TC4 substrate. The effects of Nb content on microstructure and properties of the alloys were inv... The γ-TiAl based Ti.Al.Mn.Nb alloys with different Nb additions were fabricated by selective laser melting (SLM) on the TC4 substrate. The effects of Nb content on microstructure and properties of the alloys were investigated. The results reveal that the alloys consist of γ-TiAl phase with tetragonal lattice structure and α2-Ti3Al phase with hcp lattice structure, and show a sequential structure change from near full dendrite to near lamellar structure with the increase of Nb addition. Owing to the higher Nb content in γ-TiAl phase and the formation of near lamellar structure, the alloy with 7.0 at.% Nb addition has the best combination of properties among the studied alloys, namely, not only a high hardness of HV 2000, a high strength of 1390 MPa and a plastic deformation of about 24.5%, but also good tribological properties and high-temperature oxidation resistance. 展开更多
关键词 selective laser melting γ-TiAl based alloys MICROSTRUCTURE PROPERTIES Nb additions
下载PDF
Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging 被引量:12
16
作者 Qi ZHANG Zheng-long LIANG +3 位作者 Miao CAO Zi-fan LIU An-feng ZHANG Bing-heng LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1036-1042,共7页
To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolutio... To improve the mechanical properties of Ti6Al4V alloy prepared by selective laser melting(SLM)process,the precision forging was conducted at950°C and different strains and strain rates.The microstructure evolution of as-built samples and forged samples in both horizontal and vertical sections was visualized and analyzed by optical microscope and X-ray diffraction.The microstructure was improved by the precision forging and subsequent water quenching.The porosity in each section was accounted.It can be seen that high strain rate and large deformation result in low porosity,consequently contributing to a better fatigue performance.The micro-hardness was lowered after precision forging and water quenching,while the difference of microhardness between the horizontal and vertical sections became smaller,which illustrated that this process can improve the anisotropy of structural components fabricated by SLM. 展开更多
关键词 selective laser melting Ti6Al4V alloy precision forging MICROSTRUCTURE ANISOTROPY
下载PDF
Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition 被引量:12
17
作者 Zhan-qi LIU Rui-xin MA +2 位作者 Guo-jian XU Wen-bo WANG Yun-hai SU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期917-927,共11页
The microstructure evolution and mechanical properties of the as-deposited γ-TiAl-based alloy specimen fabricated via laser melting deposition and as-annealed specimens at different temperatures were investigated.The... The microstructure evolution and mechanical properties of the as-deposited γ-TiAl-based alloy specimen fabricated via laser melting deposition and as-annealed specimens at different temperatures were investigated.The results show that the microstructure of as-deposited specimen is composed of fineα2(Ti3Al)+γlamellae.With the increase of annealing temperature,the bulk γ m(TiAl)phase gradually changes from single γ phase toγphase+acicularα2 phase,finally small γ phase+lamellar α2+γ phase.Compared with the mechanical properties of as-depositedγ-TiAl alloy(tensile strength 469 MPa,elongation 1.1%),after annealing at 1260℃ for 30 min followed by furnace cooling(FC),the room-temperature tensile strength of the specimen is 543.4 MPa and the elongation is 3.7%,which are obviously improved. 展开更多
关键词 laser melting deposition ANNEALING TiAl alloy microstructure evolution mechanical properties
下载PDF
Microstructure and mechanical properties of high strength Mg−15Gd−1Zn−0.4Zr alloy additive-manufactured by selective laser melting process 被引量:14
18
作者 Peng-huai FU Nan-qing WANG +5 位作者 Hai-guang LIAO Wen-yu XU Li-ming PENG Juan CHEN Guo-qi HU Wen-jiang DING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1969-1978,共10页
In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The ... In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates. 展开更多
关键词 selective laser melting Mg−rare earth alloy grain refinement Mg−Gd−Zn strengthening mechanism
下载PDF
Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality 被引量:11
19
作者 pan tao huai-xue li +3 位作者 bai-ying huang quan-dong hu shui-li gong qing-yan xu 《China Foundry》 SCIE 2018年第4期243-252,共10页
Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of t... Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of the SLM-processed components depend on the microstructure and surface quality. In this work, the microstructures, mechanical properties, and fracture behaviors of SLM-processed Ti-6AI-4V alloy under machined and as-built surfaces after annealing treatments and hot isostatic pressing (HIP) were investigated. The microstructures were analyzed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The mechanical properties were measured by tensile testing at room temperature. The results indicate that the as-deposited microstructures are characterized by columnar grains and fine brittle martensite and the as- deposited properties present high strength, low ductility and obvious anisotropy. After annealing at 800-900~C for 2-4 h and HIP at 920~C/100MPa for 2 h, the brittle martensite could be transformed into ductile lamellar (a+~) microstructure and the static tensile properties of SLM-processed Ti-6AI-4V alloys in the machined condition could be comparable to that of wrought materials. Even after HIP treatment, the as-built surfaces could decrease the ductility and reduction of area of SLM-processed fi-6AI-4V alloys to 9.2% and 20%, respectively. The crack initiation could occur at the columnar grain boundaries or at the as-built surfaces. The lamellar (a+13) microstructures and columnar grains could hinder or distort the crack propagation path during tensile tests. 展开更多
关键词 selective laser melting TI-6AL-4V MICROSTRUCTURE mechanical properties FRACTURE surface quality
下载PDF
Influence of process parameters and aging treatment on the microstructure and mechanical properties of Al Si8Mg3 alloy fabricated by selective laser melting 被引量:9
20
作者 Yaoxiang Geng Hao Tang +6 位作者 Junhua Xu Yu Hou Yuxin Wang Zhen He Zhijie Zhang Hongbo Ju Lihua Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1770-1779,共10页
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M... Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM. 展开更多
关键词 AlSi8Mg3 alloy selective laser melting process parameters MICROSTRUCTURE aging treatment mechanical properties
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部