期刊文献+
共找到466篇文章
< 1 2 24 >
每页显示 20 50 100
Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality 被引量:12
1
作者 pan tao huai-xue li +3 位作者 bai-ying huang quan-dong hu shui-li gong qing-yan xu 《China Foundry》 SCIE 2018年第4期243-252,共10页
Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of t... Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of the SLM-processed components depend on the microstructure and surface quality. In this work, the microstructures, mechanical properties, and fracture behaviors of SLM-processed Ti-6AI-4V alloy under machined and as-built surfaces after annealing treatments and hot isostatic pressing (HIP) were investigated. The microstructures were analyzed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The mechanical properties were measured by tensile testing at room temperature. The results indicate that the as-deposited microstructures are characterized by columnar grains and fine brittle martensite and the as- deposited properties present high strength, low ductility and obvious anisotropy. After annealing at 800-900~C for 2-4 h and HIP at 920~C/100MPa for 2 h, the brittle martensite could be transformed into ductile lamellar (a+~) microstructure and the static tensile properties of SLM-processed Ti-6AI-4V alloys in the machined condition could be comparable to that of wrought materials. Even after HIP treatment, the as-built surfaces could decrease the ductility and reduction of area of SLM-processed fi-6AI-4V alloys to 9.2% and 20%, respectively. The crack initiation could occur at the columnar grain boundaries or at the as-built surfaces. The lamellar (a+13) microstructures and columnar grains could hinder or distort the crack propagation path during tensile tests. 展开更多
关键词 selective laser melting TI-6AL-4V MICROSTRUCTURE mechanical properties FRACTURE surface quality
下载PDF
Effects of selective laser melting parameters on surface quality and densification behaviours of pure nickel 被引量:8
2
作者 Tian-yang YUE Sheng ZHANG +4 位作者 Chao-yue WANG Wei XU Yi-di XU Yu-sheng SHI Yong ZANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2634-2647,共14页
The effects of laser power and scanning speed on the forming characteristic of scanning tracks,densification behaviours and surface roughness of pure nickel fabricated with selective laser melting(SLM)were studied.The... The effects of laser power and scanning speed on the forming characteristic of scanning tracks,densification behaviours and surface roughness of pure nickel fabricated with selective laser melting(SLM)were studied.The results indicate that the scanning tracks showed continuous,regular and flat surface with increasing laser power and decreasing scanning speed in a specific range,which could avoid the defects(like holes and balling structures)forming in SLM processing.The optimal process window was identified as the scanning speed of 900 mm/s and the laser power of 255−275 W by comparing the surface qualities and densification behaviours.With the suitable processing parameters,the relative density could achieve 99.16%,the tensile strength was(359.49±2.74)MPa,and the roughnesses of the top and side surfaces were(12.88±2.23)and(14.98±0.69)μm,respectively. 展开更多
关键词 selective laser melting pure nickel scanning track DENSIFICATION surface roughness
下载PDF
Experimental study on mechanism of influence of laser energy density on surface quality of Ti-6Al-4V alloy in selective laser melting 被引量:7
3
作者 SHI Wen-tian LI Ji-hang +3 位作者 LIU Yu-de LIU Shuai LIN Yu-xiang HAN Yu-fan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3447-3462,共16页
This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of... This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of scanning speed, hatching space, and laser power on surface quality were analyzed, and the optimal LED range for surface quality was determined. The results show that pores and spherical particles appear on the sample’s surface when low LED is applied, while there are lamellar structures on the sides of the samples. Cracks appear on the sample’s surface,and the splash phenomenon increases when a high LED is taken. At the same time, a large amount of unmelted powder adhered to the side of the sample. The surface quality is the best when the LED is 150-170 J/mm^(3). The preferred hatch space is currently 0.05-0.09 mm, the laser power is 200-350 W, and the average surface roughness value is(15.1±3) μm.The average surface hardness reaches HV404±HV3, higher than the forging standard range of HV340-HV395.Increasing the LED within the experiment range can increase the surface hardness, yet an excessively high LED will not further increase the surface hardness. The microstructure is composed of needle-like α’-phases with a length of about 20μm, in a crisscross ‘N’ shape, when the LED is low. The β-phase grain boundary is not obvious, and the secondaryphase volume fraction is high;when the LED is high, the α’-phase of the microstructure is in the form of coarse slats, and the secondary-phase is composed of a small amount of secondary α’-phase, the tertiary α’-phase and the fourth α’-phase disappear, and the volume fraction of the secondary-phase becomes low. 展开更多
关键词 laser energy density surface quality selective laser melting TI-6AL-4V MICROSTRUCTURE
下载PDF
Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: Corrosion behaviour, microhardness and biocompatibility 被引量:4
4
作者 Xiyu Yao Jincheng Tang +5 位作者 Yinghao Zhou Andrej Atrens Matthew S.Dargusch Bjoern Wiese Thomas Ebel Ming Yan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2155-2168,共14页
Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simulta... Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys. 展开更多
关键词 Mg alloys Selective laser melting surface modification Corrosion behaviour MICROHARDNESS
下载PDF
Surface Integrity of Ultrasonically-Assisted Milled Ti6Al4V Alloy Manufactured by Selective Laser Melting 被引量:3
5
作者 Sai Guo Wei Du +2 位作者 Qinghong Jiang Zhigang Dong Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期42-55,共14页
The Ti6Al4V parts produced by the existing selective laser melting(SLM)are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and perf... The Ti6Al4V parts produced by the existing selective laser melting(SLM)are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and performances of the parts.In this regard,ultrasonically-assisted machining(UAM)technique is commonly introduced to improve the machining quality due to its merits in increasing tool life and reducing cutting force.However,most of the previous studies focus on the performance of UAM with ultrasonic vibrations applied in the tangential and feed directions,whereas few of them on the impact of ultrasonic vibration along the vertical direction.In this study,the effects of feed rate on surface integrity in ultrasonically-assisted vertical milling(UAVM)of the Ti6Al4V alloy manufactured by SLM were systemically investigated compared with the conventional machining(CM)method.The results revealed that the milling forces in UAVM showed a lower amplitude than that in CM due to the intermittent cutting style.The surface roughness values of the parts produced by UAVM were generally greater than that by CM owing to the extra sinusoidal vibration textures induced by the milling cutter.Moreover,the extra vertical ultrasonic vibration in UAVM was beneficial to suppressing machining chatter.As feed rate increased,surface microhardness and thickness of the plastic deformation zone in CM raised due to more intensive plastic deformation,while these two material properties in UAVM were reduced owing to the mitigated impact effect by the high-frequency vibration of the milling cutter.Therefore,the improved surface microhardness and reduced thickness of the subsurface deformation layer in UAVM were ascribed to the vertical high-frequency impact of the milling cutter in UAVM.In general,the results of this study provided an in-depth understanding in UAVM of Ti6Al4V parts manufactured by SLM. 展开更多
关键词 Ultrasonically-assisted vertical milling surface integrity TI6AL4V Selective laser melting
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
6
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 surface integrity Inconel 738LC Selective laser melting High-speed milling
下载PDF
High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy 被引量:4
7
作者 Yang Wang Shu-quan Zhang +1 位作者 Xiang-jun Tian Hua-ming Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期665-670,共6页
This article examines fatigue crack nucleation and propagation in laser deposited TC18 titanium alloy. The Widmanstatten structure was obtained by double-annealing treatment,. High-cycle fatigue (HCF) tests were con... This article examines fatigue crack nucleation and propagation in laser deposited TC18 titanium alloy. The Widmanstatten structure was obtained by double-annealing treatment,. High-cycle fatigue (HCF) tests were conducted at room temperature with the stress ratio of 0.1 and the notch concentration factor Kt = 1. Fatigue cracks initiated preferentially at micropores, which had great effect on the HCF properties. The effect decreased with the decrease of pore size and the increase of distance from the pore location to the specimen surface. The crack initiation region was characterized by the cleavage facets of a lamella and the tearing of β matrix. The soft a precipitated-free zone formed along grain boundaries accelerated the crack propagation. Subsurface observation indicated that the crack preferred to propagate along the grain boundary α or border of a lamella or vertical to a lamella. 展开更多
关键词 titanium alloys FATIGUE crack initiation crack propagation laser melting deposition
下载PDF
Effect of Zr content on crack formation and mechanical properties of IN738LC processed by selective laser melting 被引量:9
8
作者 Yong HU Xiao-kang YANG +3 位作者 Wen-jiang KANG Yu-tian DING Jia-yu XU Hui-ying ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1350-1362,共13页
Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distrib... Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved. 展开更多
关键词 selective laser melting IN738LC alloy Zr content solidification crack process parameter optimization mechanical properties
下载PDF
Microstructure,Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
9
作者 Wenbin Ji Chuncheng Liu +1 位作者 Shijie Dai Riqing Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期91-105,共15页
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL... To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation. 展开更多
关键词 Selective laser melting High-speed steel Mechanical properties MICROSTRUCTURE Interlaminar cracks
下载PDF
Process analysis of direct laser melting to fabricate layered hybrid beads
10
作者 Jeong-hwan JANG Sung-min MUN +1 位作者 Tae-hyun KIM Young-hoon MOON 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期813-819,共7页
The successful fabrication of layered hybrid beads by DLM process is limited by dissimilar melting ranges of different powders.For the application of DLM process into manufacturing industries,target mechanical propert... The successful fabrication of layered hybrid beads by DLM process is limited by dissimilar melting ranges of different powders.For the application of DLM process into manufacturing industries,target mechanical properties of final product must be achieved.Process analysis was performed for the DLM fabrication of layered hybrid beads by using stainless steel (SS 316L) and titanium powders.For the analysis of fabrication characteristics,single hybrid bead was formed using SS316L powder onto the base plate and then Ti powder was melted onto the previous melted layer.In addition,multi-layer hybrid beads were fabricated for the analysis of the layering effects between them.From these studies,the effects of the processing parameters,such as laser power,scan rate and scan line spacing on surface morphology were characterized and optimum processing conditions for the DLM fabrication of layered hybrid beads were developed. 展开更多
关键词 STAINLESS steel 316L Ti powder energy density surface roughness DIRECT laser melting process LAYERED HYBRID BEADS
下载PDF
Corrosion Testing of a Heat Treated 316 L Functional Part Produced by Selective Laser Melting
11
作者 Evy De Bruycker Maria L. Montero Sistiaga +1 位作者 Fabien Thielemans Kim Vanmeensel 《Materials Sciences and Applications》 2017年第3期223-233,共11页
Selective Laser Melting (SLM) shows a big potential among metal additive manufacturing (AM) technologies. However, the large thermal gradients and the local melting and solidification processes of SLM result in the pr... Selective Laser Melting (SLM) shows a big potential among metal additive manufacturing (AM) technologies. However, the large thermal gradients and the local melting and solidification processes of SLM result in the presence of a significant amount of residual stresses in the as built parts. These internal stresses will not only affect mechanical properties, but also increase the risk of Stress Corrosion Cracking (SCC). A twister used in an air extraction pump of a condenser to create a swirl in the water, was chosen as a candidate component to be produced by SLM in 316 L stainless steel. Since the main expected damage mechanism of this component in service is corrosion, corrosion tests were carried out on an as-built twister as well as on heat treated components. It was shown that a low temperature heat treatment at 450℃ had only a limited effect on the residual stress reduction and concomitant corrosion properties, while the internal stresses were significantly reduced when a high temperature heat treatment at 950℃ was applied. Furthermore, a specific stress corrosion sensitivity test proved to be a useful tool to evaluate the internal stress distribution in a specific component. 展开更多
关键词 316 L Selective laser melting Stress Corrosion cracking RESIDUAL Stresses HEAT TREATMENTS
下载PDF
Achieving ultra-high strength and ductility in Mg–9Al–1Zn–0.5Mn alloy via selective laser melting
12
作者 Cheng Chang Hanlin Liao +5 位作者 Lin Yi Yilong Dai Sophie C.Cox Ming Yan Min Liu Xingchen Yan 《Advanced Powder Materials》 2023年第2期56-69,共14页
Fabrication of the Mg–9Al–1Zn–0.5Mn alloy with excellent mechanical performance using selective laser melting(SLM)technology is quite difficult owing to the poor weldability and low boiling point.To address these ch... Fabrication of the Mg–9Al–1Zn–0.5Mn alloy with excellent mechanical performance using selective laser melting(SLM)technology is quite difficult owing to the poor weldability and low boiling point.To address these challenges and seek the optimal processing parameters,response surface methodology was systematically utilized to determine the appropriate SLM parameter combinations.Mg–9Al–1Zn–0.5Mn sample with high relative density(99.5±0.28%)and favorable mechanical properties(microhardness=95.6±5.28 HV_(0.1),UTS=370.2 MPa,and At=10.4%)was achieved using optimized SLM parameters(P=120 W,v=500 mm/s,and h=45μm).Sample is dominated by a random texture and microstructure is primarily constituted by quantities offine equiaxed grains(α-Mg phase),a small amount ofβ-Al_(12)Mg_(17) structures(4.96 vol%,including spherical:[2110]_(α)//[111]_(β)and long lath-like:[2110]_(α)//[115]_(β)or[1011]_(α)//[321]_(β)),and some short rod-shaped Al8Mn5 nanoparticles.Benefiting from grain boundary strengthening,solid solution strengthening,and precipitation hardening of various nanoparticles(β-Al12Mg17 and Al8Mn5),high-performance Mg–9Al–1Zn–0.5Mn alloy biomedical implants can be fabricated.Precipitation hardening dominates the strengthening mechanism of the SLM Mg–9Al–1Zn–0.5Mn alloy. 展开更多
关键词 Selective laser melting Mg-Zn-Al-Mn alloy Response surface analysis Microstructural evolution Mechanical properties
下载PDF
Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling 被引量:7
13
作者 崔泽琴 施海霞 +1 位作者 王文先 许并社 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1446-1453,共8页
Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid... Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process. 展开更多
关键词 magnesium alloy laser surface melting liquid nitrogen-assisted cooling MICROHARDNESS corrosion resistance
下载PDF
Microstructure,cracking behavior and control of Al-Fe-V-Si alloy produced by selective laser melting 被引量:3
14
作者 Shao-Bo Sun Li-Jing Zheng +1 位作者 Jin-Hui Liu Hu Zhang 《Rare Metals》 SCIE EI CAS CSCD 2023年第4期1353-1362,共10页
Selective laser melting(SLM)technology based on atomized powder was used to fabricate Al-8.5Fe-1.3V-1.7Si(wt%)alloy parts.The microstructure and crack characterization of SLM samples fabricated at various conditions w... Selective laser melting(SLM)technology based on atomized powder was used to fabricate Al-8.5Fe-1.3V-1.7Si(wt%)alloy parts.The microstructure and crack characterization of SLM samples fabricated at various conditions were presented.Results show that the cracks appear periodically along the building direction,initiate preferably at the outer edges of the as-built samples and propagated along the remelting border zone(RBZ)into deposited layers.Solid-phase cracking is proposed according to the fracture morphology.The thermal-induced residual stress during SLM combined with the precipitation of relatively large-sized Al_mFe phase in the RBZ results in the formation of cracks.Enhancing scanning speed and hatch distance enable to reduce the cracking sensitivity.The crack-free Al-8.5Fe-1.3V-1.7Si parts can be fabricated at optimized parameters of laser power of 320 W,scanning speed of 1000 mm·s^(-1)and hatch distance of0.10 mm along with proper laser pre-heating procedure.The samples built horizontally show good ultimate tensile properties of 454 MPa in average with the elongation of7.2%. 展开更多
关键词 Al-Fe-V-Si alloy Selective laser melting MICROSTRUCTURE cracking behavior Mechanical properties
原文传递
Laser polishing of a high-entropy alloy manufactured by selective laser melting
15
作者 Xiaojun TAN Haibing XIAO +6 位作者 Zihong WANG Wei ZHANG Zhijuan SUN Xuyun PENG Zhongmin LIU Liang GUO Qingmao ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第5期73-86,共14页
The selective laser melting(SLM)technique applied to high-entropy alloys(HEAs)has attracted considerable attention in recent years.However,its practical application has been restricted by poor surface quality.In this ... The selective laser melting(SLM)technique applied to high-entropy alloys(HEAs)has attracted considerable attention in recent years.However,its practical application has been restricted by poor surface quality.In this study,the capability of laser polishing on the rough surface of a Co-free HEA fabricated using SLM was examined.Results show that the initial SLM-manufactured(as-SLMed)surface of the Co-free HEA,with a roughness exceeding 3.0μm,could be refined to less than 0.5μm by laser polishing.Moreover,the microstructure,microhardness,and wear resistance of the laser-polished(LP-ed)zone were investigated.Results indicate that compared with the microhardness and wear resistance of the as-SLMed layer,those of the LP-ed layer decreased by 4%and 11%,respectively,because of the increase in grain size and reduction of the BCC phase.This study shows that laser polishing has an excellent application prospect in surface improvement of HEAs manufactured by SLM. 展开更多
关键词 laser polishing selective laser melting high-entropy alloy surface roughness mechanical performance
原文传递
Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting 被引量:2
16
作者 Xin Dong Ning Li +7 位作者 Yanan Zhou Huabei Peng Yuntao Qu Qi Sun Haojiang Shi Rui Li Sheng Xu Jiazhen Yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期244-253,共10页
In this work,we used the selective laser melting(SLM)fabricated Co-Cr alloy with prominent residual strain,extremely non-equilibrium microstructures,and low stacking fault energy as a precursor to fabricate materials ... In this work,we used the selective laser melting(SLM)fabricated Co-Cr alloy with prominent residual strain,extremely non-equilibrium microstructures,and low stacking fault energy as a precursor to fabricate materials with the optimal grain boundary character distribution.The grain boundary engineering(GBE)of the Co-Cr alloy was achieved by a simple heat treatment of the SLM-fabricated Co-Cr alloy.The obtained GBE Co-Cr alloy exhibited 81.47%of special grain boundaries(∑3^(n)n=1,2,3),while it substantially disrupted the connectivity of the random high-angle boundaries,successfully reducing the propensity of intergranular degradation.Slow strain rate tests(SSRTs)showed that the GBE Co-Cr alloy possessed lower stress corrosion cracking(SCC)susceptibility and higher ductility in the corrosive environment(0.9%Na Cl solution)than in the air.The high fraction of special boundaries,coupled with the stress-induced martensitic transformation(SIMT)in the GBE Co-Cr alloy yielded these results,which unique and rarely simultaneously satisfied for common structural materials.The current"SLM induced GBE strategy"offers a novel approach towards customized GBE materials with high SCC resistance and ductility in the corrosive environment,shedding new light on developing high-performance structural materials. 展开更多
关键词 Grain boundary engineering Selective laser melting Co-Cr alloy Stress corrosion cracking DUCTILITY
原文传递
Selective laser melting high-performance ZrC-reinforced tungsten composites with tailored microstructure and suppressed cracking susceptibility 被引量:2
17
作者 Yan Zhou Yu-Si Che +2 位作者 Chong Wang Rui Liu Shi-Feng Wen 《Tungsten》 2021年第1期72-88,共17页
Selective laser melting(SLM)tungsten(W)constantly su ered from severe cracking phenomenon due to the high melting temperature and low intrinsic ductility of W material.To address this significant issue,active ZrC nano... Selective laser melting(SLM)tungsten(W)constantly su ered from severe cracking phenomenon due to the high melting temperature and low intrinsic ductility of W material.To address this significant issue,active ZrC nanoparticles were introduced into the W matrix to form ZrC/W composites in situ by SLM to enhance the intrinsic toughness of W in this study.It mainly focused on the e ect of ZrC nanoparticle on the microstructure and cracking behavior of SLM W.Compared to SLM W,SLM ZrC/W composites showed finer equiaxed grains rather than columnar grains,because the ZrC nanoparticles provided many heterogeneous nucleation sites.Furthermore,ZrC nanoparticles could react with oxygen impurity at the grain boundaries(GBs),and then form stable ZrO2 and ZrW2O8 to purify and improve the cohesion strength of GBs.The columnar to equiaxed transition(CET)of grains and purified GBs played an important role in inhibiting the formation and propagation of the cracks in SLM W.Therefore,SLM ZrC/W composites exhibited lower crack density and higher mechanical properties compared to SLM W.This study provides a novel approach for suppressing the cracking susceptibility of SLM W. 展开更多
关键词 Selective laser melting TUNGSTEN ZRC COMPOSITES Cracks
原文传递
Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting 被引量:5
18
作者 Piao Gao Wenpu Huang +5 位作者 Huihui Yang Guanyi Jing Qi Liu Guoqing Wang Zemin Wang Xiaoyan Zeng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第4期144-154,共11页
Aβ-solidifying Ti-40 Al-9 V-0.5 Y(at.%)alloy with a high cracking sensitivity has been successfully fabricated by selective laser melting(SLM)in this study.The influence factors for cracking sensitivity,cracking beha... Aβ-solidifying Ti-40 Al-9 V-0.5 Y(at.%)alloy with a high cracking sensitivity has been successfully fabricated by selective laser melting(SLM)in this study.The influence factors for cracking sensitivity,cracking behavior and crack inhibition mechanism were investigated.The results show that the effects of process parameters on cracking sensitivity strongly depend on the cooling rate in molten pool with different heat transfer modes.The conduction mode with higher cooling rates exhibits a higher cracking sensitivity in comparison to the keyhole mode.Microstructure characteristics and phase transformations controlled by cooling rate determine the inherent ductility ofβ-solidifyingγ-Ti Al alloys during SLM.On this basis,the formation and inhibition mechanism of solidification and cold cracking are proposed.Finally,the crackfree Ti-40 Al-9 V-0.5 Y sample with fine equiaxed microstructures and favorable mechanical properties(microhardness of 542±19 HV,yield strength of 1871±12 MPa,ultimate strength of 2106±13 MPa and ultimate compressive strain of 10.89±0.57%)can be produced by SLM.The strengthening mechanism can be attributed to grain refinement and precipitation strengthening. 展开更多
关键词 Selective laser melting β-solidifyingγ-TiAl ALLOY cracking behavior cracking control Microstructure Phase TRANSFORMATION
原文传递
Control of wall thickness and surface morphology of tungsten thin wall parts by adjusting selective laser melting parameters 被引量:2
19
作者 Yan-jun Xie Huai-chao Yang +3 位作者 Xue-bing Wang Lin Zhao Chun-jiang Kuang Wei Han 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第2期182-190,共9页
The tungsten thin wall parts which were used as high-performance collimator devices were fabricated by optimizing selective laser melting laser parameters.The effect of laser power and scan rate on wall thickness and ... The tungsten thin wall parts which were used as high-performance collimator devices were fabricated by optimizing selective laser melting laser parameters.The effect of laser power and scan rate on wall thickness and surface morphology of tungsten山in wall parts was investigated,respectively.The results indicated that the wall thickness increased with the enhancemem in laser power as a linear relationship.On the contrary,the wall thickness decayed exponentially with the acceleration in laser sean rate.Meanwhile,the wall thickness of the parts fabricated by laser double-pass melting was ihinner than that fabricated by laser single-pass melting.In addition,mathematic models for selecting suitable laser power and laser sean rate to fabricate specified tungsten thin wall parts were proposed.Furthermore,the effects of laser parameters on the top surface roughness,adhesive parts and hot cracks were also discussed. 展开更多
关键词 Selective laser melting TUNGSTEN laser power SCAN rate THIN wall part surface morphology
原文传递
Effect of laser surface melting on surface integrity of Al-4.5Cu composites reinforced with SiC and MoS2 被引量:3
20
作者 Praveen Kumar BANNARAVURI Anil Kumar BIRRU Uday Shanker DIXIT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期344-362,共19页
Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their... Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting(LSM).The topography,microhardness,corrosion resistance and wear resistance of the laser melted surfaces were studied.Overall surface integrity after LSM was compared with as-cast surface.LSM enhanced the microhardness and wear resistance of the surface in each case.Porosity of the laser melted surface was low and corrosion resistance was high.Thus,LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites.However,there is an optimum laser specific energy,around 38 J/m^2 in this study,for obtaining the best surface integrity. 展开更多
关键词 aluminium composites silicon carbide molybdenum disulfide laser surface melting MICROHARDNESS corrosion resistance
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部