Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, re...Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for productionof the parts with corresponding shapes were obtained. The fabrication precision was high and thecomponents were compact. The solidification microstructure of the parts was analyzed by opticalmicroscopy. The results show that the solidification microstructure is composed of columnardendrites, by epitaxial growth onto the directional solidification substrates. The crystallographyorientation of the parts was parallel to that of the substrates. The primary arm spacing was about10 mum, which is in the range of superfine dendrites, and the secondary arm was small or evendegenerated. It is concluded that the laser metal forming technique provides a method to manufacturedirectional solidification components.展开更多
Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different s...Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different solidification conditions. As the crystallography orientation of the substrate influences that of the cladding layers strongly. Multi-grain cladding layers can be obtained on the multi-grain substrate, while directional solidification columnar or even single crystal cladding layer can be achieved on the directional solidification or single crystal substrate.The mechanism of microstructure formation in the cladding layer was furtherly investigated according to the columnar/equiaxed transition profile. In addition,an ear-like single crystal component was manufactured using the DD3 single crystal as substrate. The yield strength at room temperature was examined on the heat-treated slice sample. The results indicate that the yield strength is about 97.9% of that of the powder metallurgical tensile sample while the plasticity overpasses 80% of the powder metallurgical tensile sample.展开更多
Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found th...Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions. When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°, single crystal cladding layers were acquired. Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears. Meanwhile, even when the experiments were performed on the same preferred crystal surface, the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions. The secondary arms were degenerated and the primary arm spacing was about 10\|20 μm. Further investigation shows that the phases of the cladding layer are mainly made up of γ,γ′ , the flower\|like γ/γ′ eutectic and carbide. The morphology of γ′ was cubical and the size is less than 0.1μm. {展开更多
Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet ...Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.展开更多
Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including l...Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including laser power, laser scanning paths, and scanning speed, given a prescribed shape. To date, research has focused on process designing for rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. In the present study, process designing for axis-symmetric geometries--with focus on class of shapes--is handled using a formerly proposed distance-based approach. A prescribed shape is achieved for geometries such as quarter-circular and half-circular ring plates. Experimental results verify the applicability of the proposed method for a class of shapes.展开更多
基金This research was financially supported by the National High Technology Research and Development Program of China (No.2001AA337020)the Development Plan of State Key Fundamental Research of China (No. G2000067205-3)
文摘Straight plates, hollow columns, ear-like blade tips, twist plates withdirectional solidification microstructure made of Rene 95 superalloys were successfully fabricatedon Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for productionof the parts with corresponding shapes were obtained. The fabrication precision was high and thecomponents were compact. The solidification microstructure of the parts was analyzed by opticalmicroscopy. The results show that the solidification microstructure is composed of columnardendrites, by epitaxial growth onto the directional solidification substrates. The crystallographyorientation of the parts was parallel to that of the substrates. The primary arm spacing was about10 mum, which is in the range of superfine dendrites, and the secondary arm was small or evendegenerated. It is concluded that the laser metal forming technique provides a method to manufacturedirectional solidification components.
文摘Rene95 powder and different substrates were selected to be conducted by the laser metal forming technique. It is found that the cladding layers with either columnar or equiaxed grains can be obtained under different solidification conditions. As the crystallography orientation of the substrate influences that of the cladding layers strongly. Multi-grain cladding layers can be obtained on the multi-grain substrate, while directional solidification columnar or even single crystal cladding layer can be achieved on the directional solidification or single crystal substrate.The mechanism of microstructure formation in the cladding layer was furtherly investigated according to the columnar/equiaxed transition profile. In addition,an ear-like single crystal component was manufactured using the DD3 single crystal as substrate. The yield strength at room temperature was examined on the heat-treated slice sample. The results indicate that the yield strength is about 97.9% of that of the powder metallurgical tensile sample while the plasticity overpasses 80% of the powder metallurgical tensile sample.
基金National Key Basic Research Development Program me of china(No.G2 0 0 0 0 672 0 5 -3 )
文摘Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material. The solidification microstructure in the sample was investigated. It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions. When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°, single crystal cladding layers were acquired. Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears. Meanwhile, even when the experiments were performed on the same preferred crystal surface, the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions. The secondary arms were degenerated and the primary arm spacing was about 10\|20 μm. Further investigation shows that the phases of the cladding layer are mainly made up of γ,γ′ , the flower\|like γ/γ′ eutectic and carbide. The morphology of γ′ was cubical and the size is less than 0.1μm. {
基金this research from the Scientific Research Fund of Jiangsu Polytechnic University(GrantNo.ZMF07020042)Fund of Jiangsu ProvincialKey Laboratory for Science and Technology of Photo-manufacroring (Grant No.GZ-1-02)the NaturalScience Foundation of the Jiangsu Higher EducationInstitutions of China( Grant No. 08KJB430002 ) is gratefully acknowledged.
文摘Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.
文摘Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including laser power, laser scanning paths, and scanning speed, given a prescribed shape. To date, research has focused on process designing for rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. In the present study, process designing for axis-symmetric geometries--with focus on class of shapes--is handled using a formerly proposed distance-based approach. A prescribed shape is achieved for geometries such as quarter-circular and half-circular ring plates. Experimental results verify the applicability of the proposed method for a class of shapes.