Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% ...Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.展开更多
The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epit...The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.展开更多
Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results sh...Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates,and (200) was the preferred orientation.With the increasing of N2 pressure,the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle.At pressure of 0.1 Pa,stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane.All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion,while the stoichiometric TiN film depicted the minimum resistivity,around 19 μΩ·cm.展开更多
Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that th...Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.展开更多
The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a ...The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior. The electrical properties of the heterojunction were investigated by means of temperature dependence current density-voltage measurements. The mechanism of the current transport was proposed based on the band structure of the heterojunction. When the applied bias V is lower than 0.15 V, the current follows the Ohmic behavior. When 0.15 V ~ V 〈 0.6 V, the transport property is dominated by diffusion or recombination in the junction space charge region, while at higher voltages (V 〉 0.6 V), the space charge limited effect becomes the main transport mechanism. The current-voltage characteristic under illumination was also investigated. The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm^2, respectively.展开更多
InAs/GaAs quantum dot(QD)lasers were grown on silicon substrates using a thin Ge buffer and three-step growth method in the molecular beam epitaxy(MBE)system.In addition,strained superlattices were used to prevent thr...InAs/GaAs quantum dot(QD)lasers were grown on silicon substrates using a thin Ge buffer and three-step growth method in the molecular beam epitaxy(MBE)system.In addition,strained superlattices were used to prevent threading disloca-tions from propagating to the active region of the laser.The as-grown material quality was characterized by the transmission electron microscope,scanning electron microscope,X-ray diffraction,atomic force microscope,and photoluminescence spectro-scopy.The results show that a high-quality GaAs buffer with few dislocations was obtained by the growth scheme we de-veloped.A broad-area edge-emitting laser was also fabricated.The O-band laser exhibited a threshold current density of 540 A/cm^(2) at room temperature under continuous wave conditions.This work demonstrates the potential of large-scale and low-cost manufacturing of the O-band InAs/GaAs quantum dot lasers on silicon substrates.展开更多
By using laser molecular beam epitaxy (L-MBE), atomic scale epitaxial growth of BaTiO3(BTO) thin films on SrTiO3 (STO) substrates is achieved. Measurements of reflection high energy electron diffraction (RHEED), X-ray...By using laser molecular beam epitaxy (L-MBE), atomic scale epitaxial growth of BaTiO3(BTO) thin films on SrTiO3 (STO) substrates is achieved. Measurements of reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy reveal that the BTO films are c-axis oriented single crystals with smooth surface. The multi-layer ferroelectric/superconducting heterostructures are also prepared and the ferroelectric properties of BTO films are studied. The results show that by using L-MBE technique, high quality BTO films and improved device performance can be obtained.展开更多
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the...Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.展开更多
Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperatu...Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.展开更多
High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron...High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.展开更多
Znl_xCoxO (x = 0.05) thin films are deposited on sapphire (0001) substrates by laser-molecular beam epitaxy technique at different substrate temperatures. The structural, stress and morphology evolution features a...Znl_xCoxO (x = 0.05) thin films are deposited on sapphire (0001) substrates by laser-molecular beam epitaxy technique at different substrate temperatures. The structural, stress and morphology evolution features are investigated by means of X-ray diffraction and atomic force microscopy. The surface parameters of roughness exponent α, root mean square (RMS) roughness w and autocorrelation length ~ are calculated and the surface parameters are preliminarily analyzed. The values of ~ vary from 0.7 to 0.9. The RMS roughness w is less than 2.2 nm, and it increases with increasing Ts from 300 to 400 °C, and then decreases when Ts is 500 °C. The autocorrelation length ~ decreases monotonously with the increase in Ts from 300 to 500 °C, which indicates that the increase in Ts restrains the spread of the surface fluctuations until Ts is higher than 400 °C.展开更多
High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary am...High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.展开更多
A series of c-axis oriented BaTiO3/SrTiO3 superlattices with the atomic-scale precision were epitaxially grown on single-crystal SrTiO3(100) substrates using laser molecular-beam epitaxy (LMBE). A periodic modulation ...A series of c-axis oriented BaTiO3/SrTiO3 superlattices with the atomic-scale precision were epitaxially grown on single-crystal SrTiO3(100) substrates using laser molecular-beam epitaxy (LMBE). A periodic modulation of the intensity of reflection high-energy electron diffraction (RHEED) in BaTiO3 and SrTiO3 layers was observed and attributed to the lattice-misfit-induced periodic variation of the terrace density in film surface. The relationship between the second-order nonlinear optical sus-ceptibilities and the superlattice structure was systematically studied. The experimental and theoretical fitting results indicate that the second-order nonlinear optical susceptibilities of BaTiO3/SrTiO3 superlattices were greatly enhanced with the maximum value being more than one order of magnitude larger than that of bulk BaTiO3 crystal. The mechanism of the enhancement of the second-order optical non-linearity was discussed by taking into account the stress-induced lattice distortion and polarization enhancement.展开更多
We report here studies on the influence of oxygen pressure on the electroresis-tance behavior of La0.9Sr0.1MnO3 thin films fabricated by laser molecular beam epi-taxy. It was found that the film deposited at lower oxy...We report here studies on the influence of oxygen pressure on the electroresis-tance behavior of La0.9Sr0.1MnO3 thin films fabricated by laser molecular beam epi-taxy. It was found that the film deposited at lower oxygen pressure shows larger c-axis parameter,higher resistance,and more distinct electroresistance. These results reveal that the electroresistance of manganite thin films can be tuned by the conditions of film fabrication.展开更多
Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by ...Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by in situ reflection high-energy electron diffraction(RHEED) observations.High-resolution X-ray diffraction(HRXRD) and high-resolution transmission electron microscopy(HRTEM) results indicated the STO(100)//CeO2(100),STO[100]//CeO2 [110] epitaxial relationship for out-of-plane and in-plane,respectively.The formation mechanism of the epitaxial film was also discussed in the light of a theoretical model.Chemical states of the LMBE ceria films were evaluated and evidences for the existence of Ce3+and oxygen vacancies were presented.展开更多
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photol...The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.展开更多
We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.Th...We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper.And the quantum well cascade laser with 100-μm-wide,2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature.The characteristic temperature T_(0) is estimated at above 60 K.展开更多
Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the...Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.展开更多
文摘Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.61790581,61790582,and 61790584)the National Natural Science Foundation of China(Grant No.61435012)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)
文摘The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.
基金Funded by the Guangxi Natural Science Foundation (No.0731005)the Open Foundation of the Key Lab of New Processing Technology for Nonferrous Metals and Materials (No.6XKFJ-06)
文摘Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates,and (200) was the preferred orientation.With the increasing of N2 pressure,the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle.At pressure of 0.1 Pa,stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane.All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion,while the stoichiometric TiN film depicted the minimum resistivity,around 19 μΩ·cm.
基金supported by the Major State Basic Research Development Program of China (Grant No. 61363)the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061)
文摘Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
基金Project supported by the Postdoctor Foundation of Hebei Province, Chinathe Natural Science Foundation of Hebei Province,China (Grant No. F2012201093)the Natural Science Foundation of Hebei University, China (Grant No. 2008127)
文摘The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior. The electrical properties of the heterojunction were investigated by means of temperature dependence current density-voltage measurements. The mechanism of the current transport was proposed based on the band structure of the heterojunction. When the applied bias V is lower than 0.15 V, the current follows the Ohmic behavior. When 0.15 V ~ V 〈 0.6 V, the transport property is dominated by diffusion or recombination in the junction space charge region, while at higher voltages (V 〉 0.6 V), the space charge limited effect becomes the main transport mechanism. The current-voltage characteristic under illumination was also investigated. The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm^2, respectively.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB2200104)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB43010102)the Frontier Science Key Research Program of CAS(Grant No.QYZDB-SSW-SLH006)。
文摘InAs/GaAs quantum dot(QD)lasers were grown on silicon substrates using a thin Ge buffer and three-step growth method in the molecular beam epitaxy(MBE)system.In addition,strained superlattices were used to prevent threading disloca-tions from propagating to the active region of the laser.The as-grown material quality was characterized by the transmission electron microscope,scanning electron microscope,X-ray diffraction,atomic force microscope,and photoluminescence spectro-scopy.The results show that a high-quality GaAs buffer with few dislocations was obtained by the growth scheme we de-veloped.A broad-area edge-emitting laser was also fabricated.The O-band laser exhibited a threshold current density of 540 A/cm^(2) at room temperature under continuous wave conditions.This work demonstrates the potential of large-scale and low-cost manufacturing of the O-band InAs/GaAs quantum dot lasers on silicon substrates.
基金Project supported by the National Natural Science Foundation of China,the National Department of Finance,and the National Center for R and D on Superconductivity of China.
文摘By using laser molecular beam epitaxy (L-MBE), atomic scale epitaxial growth of BaTiO3(BTO) thin films on SrTiO3 (STO) substrates is achieved. Measurements of reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy reveal that the BTO films are c-axis oriented single crystals with smooth surface. The multi-layer ferroelectric/superconducting heterostructures are also prepared and the ferroelectric properties of BTO films are studied. The results show that by using L-MBE technique, high quality BTO films and improved device performance can be obtained.
文摘Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
文摘Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.
基金the National Natural Science Foundation of China (Grant No. 10334070)
文摘High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.
基金support from the National Natural Science Foundation of China under Grant No.10974122Shandong Provincial Natural Science Foundation under Grant No.ZR2009FZ006support of Open Project Foundation under Grant No.KLSMS-1005 and No.KLSMS-0908 from Key Laboratory of Semiconductor Materials Science of Chinese Academy of Sciences
文摘Znl_xCoxO (x = 0.05) thin films are deposited on sapphire (0001) substrates by laser-molecular beam epitaxy technique at different substrate temperatures. The structural, stress and morphology evolution features are investigated by means of X-ray diffraction and atomic force microscopy. The surface parameters of roughness exponent α, root mean square (RMS) roughness w and autocorrelation length ~ are calculated and the surface parameters are preliminarily analyzed. The values of ~ vary from 0.7 to 0.9. The RMS roughness w is less than 2.2 nm, and it increases with increasing Ts from 300 to 400 °C, and then decreases when Ts is 500 °C. The autocorrelation length ~ decreases monotonously with the increase in Ts from 300 to 500 °C, which indicates that the increase in Ts restrains the spread of the surface fluctuations until Ts is higher than 400 °C.
基金This work was supported by the State Key Program of China (Grant No. G1998061412) the National 863 Project (Grant No. 863-CD070103) .
文摘High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.
文摘A series of c-axis oriented BaTiO3/SrTiO3 superlattices with the atomic-scale precision were epitaxially grown on single-crystal SrTiO3(100) substrates using laser molecular-beam epitaxy (LMBE). A periodic modulation of the intensity of reflection high-energy electron diffraction (RHEED) in BaTiO3 and SrTiO3 layers was observed and attributed to the lattice-misfit-induced periodic variation of the terrace density in film surface. The relationship between the second-order nonlinear optical sus-ceptibilities and the superlattice structure was systematically studied. The experimental and theoretical fitting results indicate that the second-order nonlinear optical susceptibilities of BaTiO3/SrTiO3 superlattices were greatly enhanced with the maximum value being more than one order of magnitude larger than that of bulk BaTiO3 crystal. The mechanism of the enhancement of the second-order optical non-linearity was discussed by taking into account the stress-induced lattice distortion and polarization enhancement.
基金the National Natural Science Foundation of China (Grant No. 10334070)the National Key Basic Research Program of China (Grant No. 2004CB619004)
文摘We report here studies on the influence of oxygen pressure on the electroresis-tance behavior of La0.9Sr0.1MnO3 thin films fabricated by laser molecular beam epi-taxy. It was found that the film deposited at lower oxygen pressure shows larger c-axis parameter,higher resistance,and more distinct electroresistance. These results reveal that the electroresistance of manganite thin films can be tuned by the conditions of film fabrication.
基金supported by National Natural Science Foundation of China(11076005,50932001)
文摘Highly epitaxial and pure(001)-oriented CeO2 films were grown on SrTiO3(001) substrates by laser molecular beam epitaxy method without any gas ambient.Layer-by-layer epitaxial growth mode of CeO2 was confirmed by in situ reflection high-energy electron diffraction(RHEED) observations.High-resolution X-ray diffraction(HRXRD) and high-resolution transmission electron microscopy(HRTEM) results indicated the STO(100)//CeO2(100),STO[100]//CeO2 [110] epitaxial relationship for out-of-plane and in-plane,respectively.The formation mechanism of the epitaxial film was also discussed in the light of a theoretical model.Chemical states of the LMBE ceria films were evaluated and evidences for the existence of Ce3+and oxygen vacancies were presented.
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No.4112060)the Special Foundation for National Key Scientific Instrument,China (Grant No.2012YQ140005)+5 种基金the Open Fund of High Power Laser Laboratory,China Academy of Engineering Physics (Grant No.2013HEL03)the National Natural Science Foundation of China (Grant No.61274125)the National Basic Research Program,China (Grant No.2010CB327601)the State Key Laboratory on Integrated Optoelectronics Open Project,China (Grant No.2011KFB002)financially supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programmethe financial support through a Royal Academy of Engineering/EPSRC Research Fellowship
文摘The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant No.61790581)the Key Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303020001).
文摘We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper.And the quantum well cascade laser with 100-μm-wide,2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature.The characteristic temperature T_(0) is estimated at above 60 K.
基金the Science and Technology Program of Guangzhou(Grant No.202103030001)the KeyArea Research and Development Program of Guangdong Province(Grant No.2018B030329001)+8 种基金the National Natural Science Foundation of China(Grant Nos.62035017,61505196,and 62204238)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Major Program of the National Natural Science Foundation of China(Grant Nos.61790580 and 61790581)the Chinese Academy of Sciences and Changchun City Science and Technology Innovation Cooperation Project(Grant No.21SH06)Jincheng Key Research and Development Project(Grant No.20210209)the Key R&D Program of Shanxi Province(Grant No.202102030201004)the R&D Program of Guangdong Province(Grant Nos.2018B030329001 and2020B0303020001)Shenzhen Technology Research Project(Grant No.JSGG20201102145200001)the National Key Technologies R&D Program of China(Grant No.2018YFA0306100)。
文摘Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.