Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insuff iciency of perfusion, is a common mechanism for tiss...Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insuff iciency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of pe- ripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastroin-testinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.展开更多
Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D ...Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area.展开更多
A simple and reliabe monitoring method based on laser-CCD trigonometric measurement is Proposed for toolwear sensing in the automation of manufacturing processes, and experimental results show this method is good for ...A simple and reliabe monitoring method based on laser-CCD trigonometric measurement is Proposed for toolwear sensing in the automation of manufacturing processes, and experimental results show this method is good for in-dustrial use.展开更多
A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of...A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.展开更多
Remote-laser beam cutting is a productive technology without tool wear. Especially when cutting carbon fiber reinforced polymers (CFRP), it offers constant manufacturing quality. Since it is a thermal process, a heat-...Remote-laser beam cutting is a productive technology without tool wear. Especially when cutting carbon fiber reinforced polymers (CFRP), it offers constant manufacturing quality. Since it is a thermal process, a heat-affected zone (HAZ) is formed at the edge of the cut. Based on quasi-static and cyclic mechanical tests on open-hole specimens, the influence of the process on the mechanical properties of CFRP is shown. The quasi-static tests are in good correlation with results from other researchers by indicating an increase in the maximum tensile stress of the test specimens, cut by remote-laser. The reason is the rearrangement of the shear stresses and a reduction of the notch stress concentration. However, the results of the present study show that excessive expansion of the HAZ leads to a reduction in the maximum tensile stress compared to milled test specimens. Under cyclic load conditions, remote-laser beam cutting does not lead to a more pronounced degradation than milling. The mechanical properties of the notched test pieces are sensitive to the expansion of the HAZ. For the production of components it is therefore necessary that the remote-laser beam cutting is carried out under controlled and documentable conditions. For this purpose, process thermography was tested as a tool for quality assurance. The results show that the technology is basically suitable for this task.展开更多
Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal ...Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,展开更多
Laser forming is a flexible metal forming process without a die. At present, for this innovative process no exclusive equipment is commercially available. In this paper, some improving measures including temperature m...Laser forming is a flexible metal forming process without a die. At present, for this innovative process no exclusive equipment is commercially available. In this paper, some improving measures including temperature monitoring system, shape monitoring system, cooling system and rotary segment have been proposed on the basis of the general NC laser machine in order to meet the special requirements for laser forming of metals. The improved laser machine may be conveniently used to control dynamically and record the whole laser forming process of metals.展开更多
Laser induced fluorescence technique for sea water monitoring allows no-time consuming, non-invasive and non-destructive controls. In this study, the performance of the new shipboard laser spectrofluorometric CAS-PER ...Laser induced fluorescence technique for sea water monitoring allows no-time consuming, non-invasive and non-destructive controls. In this study, the performance of the new shipboard laser spectrofluorometric CAS-PER (Compact and Advanced Laser Spectrometer—ENEA Patent) for monitoring phytoplankton community composition was examined. The prototype CASPER is based on double laser excitation of water samples in the UV (266 nm) and visible (405 nm) spectral region and a double water filtration in order to detect both quantitative data, such as chromophoric dissolved organic matter (CDOM), proteins-like components (tyrosine, tryptophan), algal pigments (chlorophylls a and b, phycoerythrin, phycocyanin, different pigments of the carotenoid groups) and qualitative data on the presence of hydrocarbons and oil pollutants. Sea water samples from different depths have been collected and analyzed from August 2010 through November 2011 in the Gulf of Asinara (N-W Sardinia). Several sampling stations were selected as sites with different degree of pollution. The accuracy and the reliability of data obtained by CASPER have been evaluated comparing the results with other standard measurements such as: Chlorophyll a (Chl a) data obtained by spectrophotometric method and total phytoplankton abundance in terms of density and class composition. Spectral deconvolution technique was developed and integrated with CASPER system to assess and characterize a marker pigments and organic compounds in situ and in vivo. Field studies confirmed CASPER system capability to effectively discriminate characteristic spectra of fluorescent water constituents, contributing to decrease the time-consuming manual analysis of the water samples in the laboratory.展开更多
文摘Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insuff iciency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of pe- ripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastroin-testinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.
基金founded by the National Natural Science Foundation of China (No. 41071273)the Doctoral Program Foundation of Institutions of Higher Education of China (No. 20090095110002)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6B35)Relevant radar data were provided by the German Aerospace Centre TerraSAR-X Science Plan (LAN1425 and LAN1173)
文摘Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area.
文摘A simple and reliabe monitoring method based on laser-CCD trigonometric measurement is Proposed for toolwear sensing in the automation of manufacturing processes, and experimental results show this method is good for in-dustrial use.
文摘A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.
文摘Remote-laser beam cutting is a productive technology without tool wear. Especially when cutting carbon fiber reinforced polymers (CFRP), it offers constant manufacturing quality. Since it is a thermal process, a heat-affected zone (HAZ) is formed at the edge of the cut. Based on quasi-static and cyclic mechanical tests on open-hole specimens, the influence of the process on the mechanical properties of CFRP is shown. The quasi-static tests are in good correlation with results from other researchers by indicating an increase in the maximum tensile stress of the test specimens, cut by remote-laser. The reason is the rearrangement of the shear stresses and a reduction of the notch stress concentration. However, the results of the present study show that excessive expansion of the HAZ leads to a reduction in the maximum tensile stress compared to milled test specimens. Under cyclic load conditions, remote-laser beam cutting does not lead to a more pronounced degradation than milling. The mechanical properties of the notched test pieces are sensitive to the expansion of the HAZ. For the production of components it is therefore necessary that the remote-laser beam cutting is carried out under controlled and documentable conditions. For this purpose, process thermography was tested as a tool for quality assurance. The results show that the technology is basically suitable for this task.
基金This project is supported by National Defense Science Foundation of China (No.614010).
文摘Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,
文摘Laser forming is a flexible metal forming process without a die. At present, for this innovative process no exclusive equipment is commercially available. In this paper, some improving measures including temperature monitoring system, shape monitoring system, cooling system and rotary segment have been proposed on the basis of the general NC laser machine in order to meet the special requirements for laser forming of metals. The improved laser machine may be conveniently used to control dynamically and record the whole laser forming process of metals.
文摘Laser induced fluorescence technique for sea water monitoring allows no-time consuming, non-invasive and non-destructive controls. In this study, the performance of the new shipboard laser spectrofluorometric CAS-PER (Compact and Advanced Laser Spectrometer—ENEA Patent) for monitoring phytoplankton community composition was examined. The prototype CASPER is based on double laser excitation of water samples in the UV (266 nm) and visible (405 nm) spectral region and a double water filtration in order to detect both quantitative data, such as chromophoric dissolved organic matter (CDOM), proteins-like components (tyrosine, tryptophan), algal pigments (chlorophylls a and b, phycoerythrin, phycocyanin, different pigments of the carotenoid groups) and qualitative data on the presence of hydrocarbons and oil pollutants. Sea water samples from different depths have been collected and analyzed from August 2010 through November 2011 in the Gulf of Asinara (N-W Sardinia). Several sampling stations were selected as sites with different degree of pollution. The accuracy and the reliability of data obtained by CASPER have been evaluated comparing the results with other standard measurements such as: Chlorophyll a (Chl a) data obtained by spectrophotometric method and total phytoplankton abundance in terms of density and class composition. Spectral deconvolution technique was developed and integrated with CASPER system to assess and characterize a marker pigments and organic compounds in situ and in vivo. Field studies confirmed CASPER system capability to effectively discriminate characteristic spectra of fluorescent water constituents, contributing to decrease the time-consuming manual analysis of the water samples in the laboratory.