We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 2...We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.展开更多
We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases w...We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.展开更多
A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse w...A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.展开更多
An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of mai...An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of maintaining mode-locked operation against different pump power levels is investigated. An increasing pump power, in conjunction with minor adjustments to the polarization controller's quarter waveplate, results in a wider ellipticity range that can accommodate mode-locked operation. Other parameters such as noise, pulsewidth, and average output power are also observed to vary as the ellipticity changes.展开更多
We experimentally show dark pulse generation in all-normal dispersion multiwavelength erbium-doped fiber laser(EDFL) with a long cavity of figure-of-eight configuration. The EDFL generates a stable multiwavelength l...We experimentally show dark pulse generation in all-normal dispersion multiwavelength erbium-doped fiber laser(EDFL) with a long cavity of figure-of-eight configuration. The EDFL generates a stable multiwavelength laser with 0.47 nm spacing at 24 m W threshold pump power, while the number of lines obtained increases with the pump power. A dark pulse emission is observed as the pump power is increased above 137 m W, with fundamental repetition rate of 29 k Hz and pulse width of 2.7 μs. It is observed that the dark pulse train can be shifted to second-, third-, and fourth-order harmonic dark pulses by carefully adjusting the polarization controller. For the fundamental dark pulse, the maximum pulse energy of 32.4 n J is obtained at pump power of 146.0 mW.展开更多
In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. ...In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. An allpolarization-maintaining structure is adopted. A 2 × 2 optical coupler with a splitting ratio of 50:50 is used at the junction to form an NOLM. Another coupler with a splitting ratio of 10:90 is introduced at one end of the fiber loop. The 10:90 coupler plays two roles: power attenuator and bidirectional output coupler. This architecture can achieve both large modulation depth and good self-starting ability simultaneously. With this architecture,the self-starting mode-locking operation is achieved easily with pump power above the threshold. The clockwise and counter-clockwise mode-locked output powers are 10.1 and 10.3 mW, respectively, with the repetition rate of 3.63 MHz. The spectral bandwidths of the clockwise and counter-clockwise mode-locked output pulses are 7.4 and 2.9 nm, and the corresponding pulse widths of the direct outputs are 530.6 fs and 1.55 ps, respectively.展开更多
A novel design of optical sampling system has been developed by using sum-frequency generation (SFG) in a periodically-poled lithium niobate (PPLN) waveguide and using passive mode-locked fiber laser pulses as opt...A novel design of optical sampling system has been developed by using sum-frequency generation (SFG) in a periodically-poled lithium niobate (PPLN) waveguide and using passive mode-locked fiber laser pulses as optical sampling pulses. The system achieved high temporal resolution and high sensitivity using a 30 mm length PPLN with quasi phase match period of 19.3 μm and 151 fs sampling pulses which were generated by passive modelock fiber laser based on nonlinear polarization rotation (NPR). Clear eye-diagram of 10 Gbit/s non-return-to-zeros (NRZ) pseudorandom binary sequence (PRBS) optical signal were successfully reconstructed by this system.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
We report a Tm-doped noise-like mode-locked(NLML)pulsed fiber laser with a compact linear cavity which consists of dual nonlinear optical loop mirrors(NOLMs).The design of dual-NOLM shows both exceptional compactness ...We report a Tm-doped noise-like mode-locked(NLML)pulsed fiber laser with a compact linear cavity which consists of dual nonlinear optical loop mirrors(NOLMs).The design of dual-NOLM shows both exceptional compactness in construction and distinct flexibility.In this laser,mode-locking can be realized through the nonlinear optical loop mirror technique.Stable noise-like mode-locked pulses with spectral bandwidth of 29.18 nm and pulse energy of 46 nJ are generated at a central wavelength of 1999.7 nm.Our results indicate that such a simple and inexpensive structure can pave the way for the development of generating supercontinuum with desirable performance.展开更多
We experimentally demonstrate the application of MoSe2 thin film as a nonlinear medium and stabilizer to generate a multi-wavelength erbium-doped fiber laser. The cooperation of a photonic crystal fiber and a polari- ...We experimentally demonstrate the application of MoSe2 thin film as a nonlinear medium and stabilizer to generate a multi-wavelength erbium-doped fiber laser. The cooperation of a photonic crystal fiber and a polari- zation-dependent isolator induces unstable multi-wavelength oscillations based on the nonlinear polarization rotation effect. A MoSe2 thin film is further incorporated into the cavity to achieve a stable multi-wavelength. The laser generates 7 lasings with a constant spacing of 0.47 nm at a pump power of 250 roW. The nmlti- wavelength erbium-doped fiber laser is stable with power fluctuations of less than 5 dB over 30 min.展开更多
The effects of gain compression on the modulation dynamics of an optically injected gain lever semiconductor laser are studied. Calculations reveal that the gain compression is not necessarily a drawback affecting the...The effects of gain compression on the modulation dynamics of an optically injected gain lever semiconductor laser are studied. Calculations reveal that the gain compression is not necessarily a drawback affecting the laser dynamics. With a practical injection strength, a high gain lever effect and a moderate compression value allow us to theoretically predict a modulation bandwidth four times higher than the free-running one without a gain lever,which is of paramount importance for the development of directly modulated broadband optical sources compatible with short-reach communication links.展开更多
We experimentally discussed the output characteristics of a passively mode-locked erbium-doped fiber laser using a single-mode fiber(SMF)structure as a saturable absorber(SA)based on nonlinear optic loop mirror(NOLM)....We experimentally discussed the output characteristics of a passively mode-locked erbium-doped fiber laser using a single-mode fiber(SMF)structure as a saturable absorber(SA)based on nonlinear optic loop mirror(NOLM).The NOLM acting as an SA has properties of controllable pulse interval and pulse width.Four different types of NOLMs are experimentally discussed and the results show that fine adjustment to the coupler ratio together with optimization of the SMF length inside the NOLM can simultaneously implement high pulse energy and pulse internal tunability.The laser configuration provides a method to generate well-performing mode-locked lasing,and the investigations of the effects of changing some parameters of the laser also provide some help for the development of mode-locked fiber laser based on NOLM.展开更多
文摘We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power.
文摘We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.
基金Fundamental Research Funds for the Central Universities(2016YJS034)
文摘A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability.
基金funding for this research under the grants RU 010-2016GA 010-2014 (ULUNG)LRGS (2015) NGOD/ UM/KPT
文摘An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of maintaining mode-locked operation against different pump power levels is investigated. An increasing pump power, in conjunction with minor adjustments to the polarization controller's quarter waveplate, results in a wider ellipticity range that can accommodate mode-locked operation. Other parameters such as noise, pulsewidth, and average output power are also observed to vary as the ellipticity changes.
文摘We experimentally show dark pulse generation in all-normal dispersion multiwavelength erbium-doped fiber laser(EDFL) with a long cavity of figure-of-eight configuration. The EDFL generates a stable multiwavelength laser with 0.47 nm spacing at 24 m W threshold pump power, while the number of lines obtained increases with the pump power. A dark pulse emission is observed as the pump power is increased above 137 m W, with fundamental repetition rate of 29 k Hz and pulse width of 2.7 μs. It is observed that the dark pulse train can be shifted to second-, third-, and fourth-order harmonic dark pulses by carefully adjusting the polarization controller. For the fundamental dark pulse, the maximum pulse energy of 32.4 n J is obtained at pump power of 146.0 mW.
基金supported by the Key Project of Bureau of International Cooperation,Chinese Academy of Sciences(No.181811KYSB20160029)the Key Research Project of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDY-SSWJSC008)
文摘In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. An allpolarization-maintaining structure is adopted. A 2 × 2 optical coupler with a splitting ratio of 50:50 is used at the junction to form an NOLM. Another coupler with a splitting ratio of 10:90 is introduced at one end of the fiber loop. The 10:90 coupler plays two roles: power attenuator and bidirectional output coupler. This architecture can achieve both large modulation depth and good self-starting ability simultaneously. With this architecture,the self-starting mode-locking operation is achieved easily with pump power above the threshold. The clockwise and counter-clockwise mode-locked output powers are 10.1 and 10.3 mW, respectively, with the repetition rate of 3.63 MHz. The spectral bandwidths of the clockwise and counter-clockwise mode-locked output pulses are 7.4 and 2.9 nm, and the corresponding pulse widths of the direct outputs are 530.6 fs and 1.55 ps, respectively.
基金The project was supported by Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), the National Natural Science Foundation of China (Grant Nos. 60978007, 61027007 and 61177067)
文摘A novel design of optical sampling system has been developed by using sum-frequency generation (SFG) in a periodically-poled lithium niobate (PPLN) waveguide and using passive mode-locked fiber laser pulses as optical sampling pulses. The system achieved high temporal resolution and high sensitivity using a 30 mm length PPLN with quasi phase match period of 19.3 μm and 151 fs sampling pulses which were generated by passive modelock fiber laser based on nonlinear polarization rotation (NPR). Clear eye-diagram of 10 Gbit/s non-return-to-zeros (NRZ) pseudorandom binary sequence (PRBS) optical signal were successfully reconstructed by this system.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
基金supported by the Nature Science Foundation of Chongqing(No.cstc2018jcyjAX0585)。
文摘We report a Tm-doped noise-like mode-locked(NLML)pulsed fiber laser with a compact linear cavity which consists of dual nonlinear optical loop mirrors(NOLMs).The design of dual-NOLM shows both exceptional compactness in construction and distinct flexibility.In this laser,mode-locking can be realized through the nonlinear optical loop mirror technique.Stable noise-like mode-locked pulses with spectral bandwidth of 29.18 nm and pulse energy of 46 nJ are generated at a central wavelength of 1999.7 nm.Our results indicate that such a simple and inexpensive structure can pave the way for the development of generating supercontinuum with desirable performance.
基金funding from the University of Malaya through Grant Nos. RU007/2015 and LRGS(2015)/NGOD/UM/KPT
文摘We experimentally demonstrate the application of MoSe2 thin film as a nonlinear medium and stabilizer to generate a multi-wavelength erbium-doped fiber laser. The cooperation of a photonic crystal fiber and a polari- zation-dependent isolator induces unstable multi-wavelength oscillations based on the nonlinear polarization rotation effect. A MoSe2 thin film is further incorporated into the cavity to achieve a stable multi-wavelength. The laser generates 7 lasings with a constant spacing of 0.47 nm at a pump power of 250 roW. The nmlti- wavelength erbium-doped fiber laser is stable with power fluctuations of less than 5 dB over 30 min.
基金European Office of Aerospace Research and Development(FA9550-15-1-0104)
文摘The effects of gain compression on the modulation dynamics of an optically injected gain lever semiconductor laser are studied. Calculations reveal that the gain compression is not necessarily a drawback affecting the laser dynamics. With a practical injection strength, a high gain lever effect and a moderate compression value allow us to theoretically predict a modulation bandwidth four times higher than the free-running one without a gain lever,which is of paramount importance for the development of directly modulated broadband optical sources compatible with short-reach communication links.
基金supported in part by the Zhejiang Province Science and Technology Plan Projects(No.LGG19F050001)the National Natural Science Foundation of China(No.601705055)the Zhejiang Provincial Natural Science Foundation of China(No.LY17F050012)。
文摘We experimentally discussed the output characteristics of a passively mode-locked erbium-doped fiber laser using a single-mode fiber(SMF)structure as a saturable absorber(SA)based on nonlinear optic loop mirror(NOLM).The NOLM acting as an SA has properties of controllable pulse interval and pulse width.Four different types of NOLMs are experimentally discussed and the results show that fine adjustment to the coupler ratio together with optimization of the SMF length inside the NOLM can simultaneously implement high pulse energy and pulse internal tunability.The laser configuration provides a method to generate well-performing mode-locked lasing,and the investigations of the effects of changing some parameters of the laser also provide some help for the development of mode-locked fiber laser based on NOLM.