Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perf...Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured approach developed to design an effective artificial neural network based model for predicting the weld bead dimensional characteristic in laser overlap welding of low carbon galvanized steel. The modelling approach is based on the analysis of direct and interaction effects of laser welding parameters such as laser power, welding speed, laser beam diameter and gap on weld bead dimensional characteristics such as depth of penetration, width at top surface and width at interface. The data used in this analysis was derived from structured experimental investigations according to Taguchi method and exhaustive FEM based 3D modelling and simulation efforts. Using a factorial design, different neural network based prediction models were developed, implemented and evaluated. The models were trained and tested using experimental data, supported with the data generated by the 3D simulation. Hold-out test and k-fold cross validation combined to various statistical tools were used to evaluate the influence of the laser welding parameters on the performances of the models. The results demonstrated that the proposed approach resulted successfully in a consistent model providing accurate and reliable predictions of weld bead dimensional characteristics under variable welding conditions. The best model presents prediction errors lower than 7% for the three weld quality characteristics.展开更多
Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components...Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components. To exploit efficiently the benefits presented by LW, it is necessary to develop an integrated approach to identify and control the welding process variables in order to produce the desired weld characteristics without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of weld bead geometry characteristics prediction for laser overlap welding of low carbon galvanized steel using 3D numerical modelling and experimental validation. The temperature dependent material properties, metallurgical transformations and enthalpy method constitute the foundation of the proposed modelling approach. An adaptive 3D heat source is adopted to simulate both keyhole and conduction mode of the LW process. The simulations are performed using 3D finite element model on commercial software. The model is used to estimate the weld bead geometry characteristics for various LW parameters, such as laser power, welding speed and laser beam diameter. The calibration and validation of the 3D numerical model are based on experimental data achieved using a 3 kW Nd:Yag laser system, a structured experimental design and confirmed statistical analysis tools. The results reveal that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects on the weld quality. The results show great concordance between predicted and measured values for weld bead geometry characteristics, such as depth of penetration, bead width at the top surface and bead width at the interface between sheets, with an average accuracy greater than 95%.展开更多
The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single l...The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single laser shock with square and round laser spot is predicted and validated by experimental results. With the Finite Element Method (FEM) model, effects of different overlapping rates and impact sequences on the distribution of residual stresses are simulated. The results indicate that: (1) Overlapping laser shock can increase the compressive residual stresses. However, it is not effective on the growth of plastically affected depth; (2) Overlapping rate should be optimized and selected carefully for the large area treatment. Appropriate overlapping rate is beneficial to obtain a homogeneous residual stress field; (3) The impact sequence has a great effect on the residual stress field. It can greatly attenuate the phenomenon of the “residual stress hole” to obtain a homogeneous residual stress field.展开更多
The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the ...The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the residual heat and edge angle effect on the substrate has changed the composition and microstructure of the coating by raising the fusion temperature and increasing the dilution degree of the coating.展开更多
This paper presents an experimental investigation of laser overlap welding of low carbon galvanized steel. Based on a structured experimental design using the Taguchi method, the investigation is focused on the evalua...This paper presents an experimental investigation of laser overlap welding of low carbon galvanized steel. Based on a structured experimental design using the Taguchi method, the investigation is focused on the evaluation of various laser welding parameters effects on the welds quality. Welding experiments are conducted using a 3 kW Nd:YAG laser source. The selected laser welding parameters (laser power, welding speed, laser fiber diameter, gap between sheets and sheets thickness) are combined and used to evaluate the variation of three geometrical characteristics of the weld (penetration depth, bead width at the surface and bead width at the interface). Various improved statistical tools are used to analyze the effects of welding parameters on the variation of the weld quality and to identify the possible relationship between these parameters and the geometrical characteristics of the weld. The results reveal that the reached hardness values are similar for all the experimental tests and all welding parameters are relevant to the weld quality with a relative predominance of laser power and welding speed. The effect of the gap is relatively limited. The investigation results reveal also that there are many options to consider for building an efficient welds quality prediction model. Results achieved using an artificial neural network based simplified model provide an indication of the prediction model performances.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
文摘Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured approach developed to design an effective artificial neural network based model for predicting the weld bead dimensional characteristic in laser overlap welding of low carbon galvanized steel. The modelling approach is based on the analysis of direct and interaction effects of laser welding parameters such as laser power, welding speed, laser beam diameter and gap on weld bead dimensional characteristics such as depth of penetration, width at top surface and width at interface. The data used in this analysis was derived from structured experimental investigations according to Taguchi method and exhaustive FEM based 3D modelling and simulation efforts. Using a factorial design, different neural network based prediction models were developed, implemented and evaluated. The models were trained and tested using experimental data, supported with the data generated by the 3D simulation. Hold-out test and k-fold cross validation combined to various statistical tools were used to evaluate the influence of the laser welding parameters on the performances of the models. The results demonstrated that the proposed approach resulted successfully in a consistent model providing accurate and reliable predictions of weld bead dimensional characteristics under variable welding conditions. The best model presents prediction errors lower than 7% for the three weld quality characteristics.
文摘Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components. To exploit efficiently the benefits presented by LW, it is necessary to develop an integrated approach to identify and control the welding process variables in order to produce the desired weld characteristics without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of weld bead geometry characteristics prediction for laser overlap welding of low carbon galvanized steel using 3D numerical modelling and experimental validation. The temperature dependent material properties, metallurgical transformations and enthalpy method constitute the foundation of the proposed modelling approach. An adaptive 3D heat source is adopted to simulate both keyhole and conduction mode of the LW process. The simulations are performed using 3D finite element model on commercial software. The model is used to estimate the weld bead geometry characteristics for various LW parameters, such as laser power, welding speed and laser beam diameter. The calibration and validation of the 3D numerical model are based on experimental data achieved using a 3 kW Nd:Yag laser system, a structured experimental design and confirmed statistical analysis tools. The results reveal that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects on the weld quality. The results show great concordance between predicted and measured values for weld bead geometry characteristics, such as depth of penetration, bead width at the top surface and bead width at the interface between sheets, with an average accuracy greater than 95%.
文摘The finite element method is presented to attain the numerical simulation of the residual stresses field in the material treated by laser shock processing. The distribution of residual stresses generated by a single laser shock with square and round laser spot is predicted and validated by experimental results. With the Finite Element Method (FEM) model, effects of different overlapping rates and impact sequences on the distribution of residual stresses are simulated. The results indicate that: (1) Overlapping laser shock can increase the compressive residual stresses. However, it is not effective on the growth of plastically affected depth; (2) Overlapping rate should be optimized and selected carefully for the large area treatment. Appropriate overlapping rate is beneficial to obtain a homogeneous residual stress field; (3) The impact sequence has a great effect on the residual stress field. It can greatly attenuate the phenomenon of the “residual stress hole” to obtain a homogeneous residual stress field.
文摘The effect of overlapping treatment on microstructure of laser clad WC/Ni60A composite coating was studied with XRD, SEM, TEM and SAED etc. The results show that during the overlapping treatment the existence of the residual heat and edge angle effect on the substrate has changed the composition and microstructure of the coating by raising the fusion temperature and increasing the dilution degree of the coating.
文摘This paper presents an experimental investigation of laser overlap welding of low carbon galvanized steel. Based on a structured experimental design using the Taguchi method, the investigation is focused on the evaluation of various laser welding parameters effects on the welds quality. Welding experiments are conducted using a 3 kW Nd:YAG laser source. The selected laser welding parameters (laser power, welding speed, laser fiber diameter, gap between sheets and sheets thickness) are combined and used to evaluate the variation of three geometrical characteristics of the weld (penetration depth, bead width at the surface and bead width at the interface). Various improved statistical tools are used to analyze the effects of welding parameters on the variation of the weld quality and to identify the possible relationship between these parameters and the geometrical characteristics of the weld. The results reveal that the reached hardness values are similar for all the experimental tests and all welding parameters are relevant to the weld quality with a relative predominance of laser power and welding speed. The effect of the gap is relatively limited. The investigation results reveal also that there are many options to consider for building an efficient welds quality prediction model. Results achieved using an artificial neural network based simplified model provide an indication of the prediction model performances.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.