A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O ...Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O x@ITO electrodes are characterized by a low amount of iron coverage of 16–50 nmol/cm^2,and show electrocatalytic activity towards water oxidation in neutral phosphate buffer pH 7 with 0.58 V overpotential and quantitative Faradaic efficiency towards oxygen production. XPS analysis on the oxygen region of the FeOx films reveals a substantial hydration of the surface after catalysis, recognized as a crucial step to access reactivity.展开更多
Polarization-stable 980 nm oxide-confined vertical-cavity surface-emitting lasers with 3 μm diamond-shaped aper- ture are fabricated by comprehensively utilizing the anisotropic properties of wet etching and wet nitr...Polarization-stable 980 nm oxide-confined vertical-cavity surface-emitting lasers with 3 μm diamond-shaped aper- ture are fabricated by comprehensively utilizing the anisotropic properties of wet etching and wet nitrogen oxida- tion of Ⅲ-Ⅴ semiconductor materials. Polarization-stable operation along the major axis of the diamond-shaped oxide aperture with 11 dB orthogonal polarization suppression ratio is achieved in a temperature range of 15-55℃ from the threshold to 4 mA.展开更多
Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and c...Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.展开更多
A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ...A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ferrules and incorporates a ring laser cavity to generate soliton pulse train operating at 1942.0nm at a threshold multimode pump power as low as 1.8 W. The mode-locked TYDFL has a repetition rate of 22.32 MHz and the calculated pulse width of 1.1 ns. Even though the SA has a low damage threshold, the easy fabrication of GO paper should promote its potentiM application in ultrafast photonics.展开更多
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-...We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.展开更多
Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) us...Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.展开更多
Recently,hexagonal boron nitride(h-BN)has become a promising nanophotonic platform for on-chip information devices due to the practicability in generating optically stable,ultra-bright quantum emitters.For an integrat...Recently,hexagonal boron nitride(h-BN)has become a promising nanophotonic platform for on-chip information devices due to the practicability in generating optically stable,ultra-bright quantum emitters.For an integrated information-processing chip,high optical nonlinearity is indispensable for various fundamental functionalities,such as all-optical modulation,high order harmonic generation,optical switching and so on.Here we study the third-order optical nonlinearity of free-standing h-BN thin films,which is an ideal platform for on-chip integration and device formation without the need of transfer.The films were synthesized by a solution-based method with abundant functional groups enabling high third-order optical nonlinearity.Unlike the highly inert pristine h-BN films synthesized by conventional methods,the free-standing h-BN films could be locally oxidized upon tailored femtosecond laser irradiation,which further enhances the third-order nonlinearity,especially the nonlinear refraction index,by more than 20 times.The combination of the free-standing h-BN films with laser activation and patterning capability establishes a new promising platform for high performance on-chip photonic devices with modifiable optical performance.展开更多
We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber fe...We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The Ni O-SA shows a 39% modulation depth with a 0.04 MW∕cm^2 saturation intensity. Our ring laser cavity based on erbium-doped active fiber with managed intracavity dispersion has the ability to generate ultrashort pulses with a full width at half-maximum(FWHM) of around 2.85 nm centered at 1561.8 nm.The pulses repeat at a frequency of 0.96 MHz and duration of 950 fs.展开更多
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
基金supported by the Italian Ministero dell’Università e della Ricerca (MIUR), (FIRB RBAP11C58Y, "Nano Solar" and PRIN 2010 "Hi-Phuture")COST action CM1205 "CARISMA: CAtalytic Rout Ines for Small Molecule Activation"
文摘Iron oxide nanoparticles(FeOx NPs, 5–30 nm size) prepared via laser ablation in liquid were supported onto Indium Tin Oxide conductive glass slides by magnetophoretic deposition(MD) technique. The resulting Fe O x@ITO electrodes are characterized by a low amount of iron coverage of 16–50 nmol/cm^2,and show electrocatalytic activity towards water oxidation in neutral phosphate buffer pH 7 with 0.58 V overpotential and quantitative Faradaic efficiency towards oxygen production. XPS analysis on the oxygen region of the FeOx films reveals a substantial hydration of the surface after catalysis, recognized as a crucial step to access reactivity.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61222501 and 61335004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111103110019
文摘Polarization-stable 980 nm oxide-confined vertical-cavity surface-emitting lasers with 3 μm diamond-shaped aper- ture are fabricated by comprehensively utilizing the anisotropic properties of wet etching and wet nitrogen oxida- tion of Ⅲ-Ⅴ semiconductor materials. Polarization-stable operation along the major axis of the diamond-shaped oxide aperture with 11 dB orthogonal polarization suppression ratio is achieved in a temperature range of 15-55℃ from the threshold to 4 mA.
基金Funded by the International Science&Technology Cooperation Program of China(No.2011DFA52650)the"111"Project(No.B13035)+1 种基金the National Natural Science Foundation of China(No.51521001)the Fundamental Research Funds for the Central Universities
文摘Antimony doped tin oxide(ATO) thin films have been prepared by pulsed laser deposition(PLD) method.The intrinsic effect of Sb dopant,including the Sb content,transition degree between Sb(3+) and Sb(5+) and crystallinity on the electrical and optical properties of the ATO thin films is mainly investigated.It is suggested that the transition degree of Sb(3+) towards Sb(5+)(Sb(5+)/Sb(3+) ratio) is determined by Sb content.When the Sb content is increased to 12 at%,the Sb(5+)/Sb(3+) ratio reaches the highest value of 2.05,corresponding to the resistivity of 2.70×10(-3) Ω·cm.Meanwhile,the Burstein-Moss effect caused by the increase of carrier concentration is observed and the band gap of the ATO thin films is broadened to 4.0 eV when the Sb content is increased to 12 at%,corresponding to the highest average optical transmittance of 92%.Comprehensively considering the combination of electrical and optical properties,the ATO thin films deposited with Sb content of 12 at%exhibit the best properties with the highest "figure of merit" of 3.85×10(-3) Ω(-1).Finally,an antimony selenide(Sb_2Se_3) heterojunction solar cell prototype with the ATO thin film as the anode has been prepared,and a power conversion efficiency of 0.83%has been achieved.
基金Supported by the Ministry of Education and University of Malaya under Grant Nos SF014-2014,PG139-2012 B and PG068-2013B
文摘A mode-locked thulium ytterbium co-doped fiber laser (TYDFL) is proposed and demonstrated by using a commercial graphene oxide (GO) paper as saturable absorber (SA). The GO paper is sandwiched between two fiber ferrules and incorporates a ring laser cavity to generate soliton pulse train operating at 1942.0nm at a threshold multimode pump power as low as 1.8 W. The mode-locked TYDFL has a repetition rate of 22.32 MHz and the calculated pulse width of 1.1 ns. Even though the SA has a low damage threshold, the easy fabrication of GO paper should promote its potentiM application in ultrafast photonics.
基金Supported by the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad
文摘We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
基金Supported by the National Natural Science Foundation of China under Grant No 61705183the Central University Special Fund Basic Research and Operating Expenses under Grant No GK201702005+1 种基金the Natural Science Foundation of Shaanxi Province under Grant No 2017JM6091the Fundamental Research Funds for the Central Universities under Grant No 2017TS011
文摘Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.
基金We are grateful for financial supports from the Australian Research Council through the Discovery Project scheme(Grant No.DP190103186 and FT210100806)the Australian Research Council through Industrial Transformation Training Centres scheme(IC180100005).
文摘Recently,hexagonal boron nitride(h-BN)has become a promising nanophotonic platform for on-chip information devices due to the practicability in generating optically stable,ultra-bright quantum emitters.For an integrated information-processing chip,high optical nonlinearity is indispensable for various fundamental functionalities,such as all-optical modulation,high order harmonic generation,optical switching and so on.Here we study the third-order optical nonlinearity of free-standing h-BN thin films,which is an ideal platform for on-chip integration and device formation without the need of transfer.The films were synthesized by a solution-based method with abundant functional groups enabling high third-order optical nonlinearity.Unlike the highly inert pristine h-BN films synthesized by conventional methods,the free-standing h-BN films could be locally oxidized upon tailored femtosecond laser irradiation,which further enhances the third-order nonlinearity,especially the nonlinear refraction index,by more than 20 times.The combination of the free-standing h-BN films with laser activation and patterning capability establishes a new promising platform for high performance on-chip photonic devices with modifiable optical performance.
文摘We demonstrate a femtosecond mode-locked erbium-doped fiber laser(EDFL) using a nickel oxide(Ni O) as a saturable absorber(SA). Ni O nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The Ni O-SA shows a 39% modulation depth with a 0.04 MW∕cm^2 saturation intensity. Our ring laser cavity based on erbium-doped active fiber with managed intracavity dispersion has the ability to generate ultrashort pulses with a full width at half-maximum(FWHM) of around 2.85 nm centered at 1561.8 nm.The pulses repeat at a frequency of 0.96 MHz and duration of 950 fs.