A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is com...A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.展开更多
With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital rec...With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.展开更多
Professional truck drivers are an essential part of transportation in keeping the global economy alive and commercial products moving. In order to increase productivity and improve safety, an increasing amount of auto...Professional truck drivers are an essential part of transportation in keeping the global economy alive and commercial products moving. In order to increase productivity and improve safety, an increasing amount of automation is implemented in modern trucks. Transition to automated heavy good vehicles is intended to make trucks accident-free and, on the other hand, more comfortable to drive. This motivates the automotive industry to bring more embedded ICT into their vehicles in the future. An avenue towards autonomous vehicles requires robust environmental perception and driver monitoring technologies to be introduced. This is the main motivation behind the DESERVE project. This is the study of sensor technology trials in order to minimize blind spots around the truck and, on the other hand, keep the driver’s vigilance at a sufficiently high level. The outcomes are two innovative truck demonstrations: one R & D study for bringing equipment to production in the future and one implementation to the driver training vehicle. The earlier experiments include both driver monitoring technology which works at a 60% - 80% accuracy level and environment perception (stereo and thermal cameras) whose performance rates are 70% - 100%. The results are not sufficient for autonomous vehicles, but are a step forward, since they are in-line even if moved from the lab to real automotive implementations.展开更多
针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM...针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.展开更多
文摘A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.
文摘With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.
基金European Commission under the ECSEL Joint Undertaking and TEKES–the Finnish Funding Agency for Innovation
文摘Professional truck drivers are an essential part of transportation in keeping the global economy alive and commercial products moving. In order to increase productivity and improve safety, an increasing amount of automation is implemented in modern trucks. Transition to automated heavy good vehicles is intended to make trucks accident-free and, on the other hand, more comfortable to drive. This motivates the automotive industry to bring more embedded ICT into their vehicles in the future. An avenue towards autonomous vehicles requires robust environmental perception and driver monitoring technologies to be introduced. This is the main motivation behind the DESERVE project. This is the study of sensor technology trials in order to minimize blind spots around the truck and, on the other hand, keep the driver’s vigilance at a sufficiently high level. The outcomes are two innovative truck demonstrations: one R & D study for bringing equipment to production in the future and one implementation to the driver training vehicle. The earlier experiments include both driver monitoring technology which works at a 60% - 80% accuracy level and environment perception (stereo and thermal cameras) whose performance rates are 70% - 100%. The results are not sufficient for autonomous vehicles, but are a step forward, since they are in-line even if moved from the lab to real automotive implementations.
文摘针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.