Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique ...Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.展开更多
To research the solidification behavior and microstructures of a laser remelting/solidification layer on anisotropic Nd_(15)Fe_(77)B_(8 )sintered magnets with their magnetization direction parallel to X, Y, Z-axis res...To research the solidification behavior and microstructures of a laser remelting/solidification layer on anisotropic Nd_(15)Fe_(77)B_(8 )sintered magnets with their magnetization direction parallel to X, Y, Z-axis respectively, their surfaces (parallel to XOY plane) were scanned by 5 kW Roffin-Sinar 850 type of CO_(2) laser along Y axis. The rapid solidification of the molten alloy in the layer results in three distinct zones. The transition zone close to the unmolten portion of a magnet (substrate), consists of the columnar Nd_(2)Fe_(14)B phase (matrix), the 10.0%~15.1% dendrite primary iron phase dispersing in the matrix, and the Nd-rich phase along Nd_(2)Fe_(14)B grain boundaries. The columnar crystal zone in the middle of the layer consists of the long columnar Nd_(2)Fe_(14)B grains and their grain boundary Nd-rich phase. And the dendrite crystal zone near the free surface of the layer consists of dendrite Nd_(2)Fe_(14)B grains and their grain boundary Nd-rich phase. When the laser scanning velocity is lower, the growing direction of the microstructures in the layer tends to the laser scanning direction step by step. When the velocity is not lower than 25 mm·s^(-1), the laser remelting/solidification layer thins and the columnar crystal zone comprises almost the whole layer. Under this condition, on the substrate with its magnetization direction along X or Y-axis respectively, the columnar Nd_(2)Fe_(14)B grains in the layer grow in the direction of Z-axis (that is their long-axis along Z-axis), their alignment of the easy magnetization axis [001] is parallel to the magnetization direction of the substrate correspondingly; but on the substrate with its magnetization direction along Z-axis, the columnar Nd_(2)Fe_(14)B grains in the transition zone grow at an angle of 30°~50° between Z-axis and their long-axis. And the columnar Nd_(2)Fe_(14)B grains in the columnar crystal zone gradually tend to the Z-axis,and their easy magnetization axis [001] arrange in the range of 0°~360° of the plane perpendicular to their long-axis.展开更多
The arrangements of the easy magnetization axis[001]of columnar Nd_(2)Fe_(14)B crystals in the laser scanned layer on anisotropic sintered Nd_(15)Fe_(77)B_(8)magnets were investigated by XRD and the Bitter method.The ...The arrangements of the easy magnetization axis[001]of columnar Nd_(2)Fe_(14)B crystals in the laser scanned layer on anisotropic sintered Nd_(15)Fe_(77)B_(8)magnets were investigated by XRD and the Bitter method.The results show that the common effects of both the heat flux and the substrate magnetization orientation constrain the columnar Nd_(2)Fe_(14)B solidified from the laser melting pool to form the c-axis texture orientated with the same direction as that of the substrate,when the geometric relationship between the heat flux in the laser scanning layer and c-axis texture orientation of the substrate is perpendicular to each other,and if the laser scanning velocity is no less than 25 mm·min^(-1).The c-axes of columnar Nd_(2)Fe_(14)B crystals are no longer randomly distributed in the plane normal to their preferential growing direction as they are randomly done in both ingots cooled by water-cooling copper mould and directionally solidified Nd-Fe-B rods.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10974183)the Fund for Science and Technology Innovation Team of Zhengzhou City,China(Grant No.2011-3)the Postdoctoral Research Sponsorship in Henan Province,China(Grant No.2011002)
文摘Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.
基金ProjectsupportedbytheNaturalScienceFundationofJiangxi(CA99110901)andZhejiang(M503096andM502166) Province
文摘To research the solidification behavior and microstructures of a laser remelting/solidification layer on anisotropic Nd_(15)Fe_(77)B_(8 )sintered magnets with their magnetization direction parallel to X, Y, Z-axis respectively, their surfaces (parallel to XOY plane) were scanned by 5 kW Roffin-Sinar 850 type of CO_(2) laser along Y axis. The rapid solidification of the molten alloy in the layer results in three distinct zones. The transition zone close to the unmolten portion of a magnet (substrate), consists of the columnar Nd_(2)Fe_(14)B phase (matrix), the 10.0%~15.1% dendrite primary iron phase dispersing in the matrix, and the Nd-rich phase along Nd_(2)Fe_(14)B grain boundaries. The columnar crystal zone in the middle of the layer consists of the long columnar Nd_(2)Fe_(14)B grains and their grain boundary Nd-rich phase. And the dendrite crystal zone near the free surface of the layer consists of dendrite Nd_(2)Fe_(14)B grains and their grain boundary Nd-rich phase. When the laser scanning velocity is lower, the growing direction of the microstructures in the layer tends to the laser scanning direction step by step. When the velocity is not lower than 25 mm·s^(-1), the laser remelting/solidification layer thins and the columnar crystal zone comprises almost the whole layer. Under this condition, on the substrate with its magnetization direction along X or Y-axis respectively, the columnar Nd_(2)Fe_(14)B grains in the layer grow in the direction of Z-axis (that is their long-axis along Z-axis), their alignment of the easy magnetization axis [001] is parallel to the magnetization direction of the substrate correspondingly; but on the substrate with its magnetization direction along Z-axis, the columnar Nd_(2)Fe_(14)B grains in the transition zone grow at an angle of 30°~50° between Z-axis and their long-axis. And the columnar Nd_(2)Fe_(14)B grains in the columnar crystal zone gradually tend to the Z-axis,and their easy magnetization axis [001] arrange in the range of 0°~360° of the plane perpendicular to their long-axis.
基金This work was financially supported by the Zhejiang Provincial Natural Science Fund of China(No.M503096)by Ministry of Science and Technology(No.2004CCA04000).
文摘The arrangements of the easy magnetization axis[001]of columnar Nd_(2)Fe_(14)B crystals in the laser scanned layer on anisotropic sintered Nd_(15)Fe_(77)B_(8)magnets were investigated by XRD and the Bitter method.The results show that the common effects of both the heat flux and the substrate magnetization orientation constrain the columnar Nd_(2)Fe_(14)B solidified from the laser melting pool to form the c-axis texture orientated with the same direction as that of the substrate,when the geometric relationship between the heat flux in the laser scanning layer and c-axis texture orientation of the substrate is perpendicular to each other,and if the laser scanning velocity is no less than 25 mm·min^(-1).The c-axes of columnar Nd_(2)Fe_(14)B crystals are no longer randomly distributed in the plane normal to their preferential growing direction as they are randomly done in both ingots cooled by water-cooling copper mould and directionally solidified Nd-Fe-B rods.