High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classifi...High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society: Grade B (CCS-B). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS), Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating. According to the results of SEM, XRD and TEM, the cladding coating consisted of nanocrystalline embedded in amorphous phase. EDS data indicated that Nb segregated in the amorphous matrix. The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating. The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.展开更多
In recent years,the coating prepared by laser cladding has attracted much attention in the field of wear research.In this work,AlCrFeNiMo_(0.5)Si_(x)(x=0,0.5,1.0,1.5,2.0)high-entropy alloy coatings were designed and p...In recent years,the coating prepared by laser cladding has attracted much attention in the field of wear research.In this work,AlCrFeNiMo_(0.5)Si_(x)(x=0,0.5,1.0,1.5,2.0)high-entropy alloy coatings were designed and prepared on Q235 steel by laser cladding.The effect of Si content on microstructure,microhardness and wear resistance of the coatings was studied in detail.The results indicate that the AlCrFeNiMo_(0.5)Si_(x) highentropy alloy coatings show an excellent bonding between substrate and the cladding layer.The AlCrFeNiMo_(0.5)Si_(x) coatings are composed of nano-precipitated phase with BCC structure and matrix with ordered B2 structure.With the addition of Si,the white phase(Cr,Mo)_(3)Si with cubic structure appears in the interdendritic,and the morphology of the coating(x=2.0)transforms into lamellar eutectic-like structures.The addition of Si enhances the microhardness and significantly improves the wear resistance of the coatings.As x increases from 0 to 2.0,the average hardness of the cladding zone increases from 632 HV to 835 HV,and the wear rate decreases from 1.64×10^(-5) mm^(3)·(N·m)^(-1) to 5.13×10^(-6) mm^(3)·(N·m)^(-1).When x≥1.5,the decreasing trend of the wear rate gradually slows down.The wear rates of Si1.5 and Si2.0 coatings are 5.85×10^(-6) mm^(3)·(N·m)^(-1) and 5.13×10^(-6) mm^(3)·(N·m)^(-1),respectively,which is an order of magnitude lower than that of Q235 steel.展开更多
The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of mart...The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.展开更多
FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and d...FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy(Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm-2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
The microstructure and wear resistance of a cast Al-Si alloy coated with metal and rare earth elements and treated by the laser rapid melt-solidification(LRMS)are studied in the pres- ent work.Optical and SEM microgra...The microstructure and wear resistance of a cast Al-Si alloy coated with metal and rare earth elements and treated by the laser rapid melt-solidification(LRMS)are studied in the pres- ent work.Optical and SEM micrographic analyses showed that a superfine microstructure was ob- tained,and the hardness was remarkably enhanced by the LRMS treatment.Wear test showed that the rapid melt-solidified microstructure had higher wear resistance than that treated by ordinary solid solution treatment.展开更多
The microstructure and sliding wear property of laser clad TiN-composite coating on steel 1045 were analyzed by SEM, EPMA, XRD, EDAX techniques and a pin-on-ring dry sliding wear testing machine. An excellent fusion b...The microstructure and sliding wear property of laser clad TiN-composite coating on steel 1045 were analyzed by SEM, EPMA, XRD, EDAX techniques and a pin-on-ring dry sliding wear testing machine. An excellent fusion bonding with low dilution and absence of cracks was obtained under the laser cladding conditions of specific energy and power density in the range 5 to 20kJ/cm ̄2 and 3.5 to 5kW/cm ̄2 respectively. The clad layers have been characterized by metallurgical examination. The bonding zone about 6μm thick is analyzed to be γ-Ni solid solution growing from the bottom of molten pool in the form of planar crystal morphology. γ-Ni, TiN particles and fine eutectic of γ-Ni+(Fe, Cr)_(23)C_6, in the interdendritic regions are observed. A large number of TiN particles in irregular shapes are remained afer laser cladding. Partial dissolution appearing on the edges of original TiN particulates and their growth during resolidification are found in the clad region. The TiN-reinforced composite coating produced by laser cladding possesses a good wear resistance n this study. An adhesive wear with a regular scale-like feature on the worn surface was observed.展开更多
FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are ...FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are composed of face-centered cubic+body-centered cubic phases.Additionally,the microstructure of the coatings consists of columnar dendrites.With the simultaneous addition of both Ni and Co elements,the columnar dendritic grains are gradually refined in the coating.Moreover,the FeCrAlCuNiCo HEA coating exhibits excellent friction performance with the coating hardness of 5847.7 MPa,friction factor of 0.45,and wear rate of 3.72×10^(−5) mm^(3)·N^(−1)·m^(−1).The predominant wear mechanism is the adhesive wear and abrasive wear.展开更多
High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this stu...High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this study,AlCoCrFe Ni(TiN)_(x)(x:molar ratio;x=0,0.2,0.4,0.6,0.8,1.0)HEA coatings were fabricated on Q235 steel by plasma spray first and then subjected to laser remelting.The experimental results confirm that plasma spray together with post laser remelting could result in the in-situ formation of TiN-Al_(2)O_(3) ceramic particles and cuboidal B2 phase in the AlCoCrFeNi(TiN)_(x) HEA coatings.The in-situ TiN-Al_(2)O_(3) and nano-cuboidal B2 precipitation phase strengthened the coatings and improved their wearresistance properties.Due to the dispersion of hard phase and nano-particles resulting from second heating,the microhardness of the Al Co Cr Fe Ni(Ti N)coatings significantly increased from 493 to 851 HV after laser remelting.For the same reasons,the wear-resistance performance was also significantly promoted after laser remelting.展开更多
To evaluate the potential of high entropy alloys for marine applications,a new high entropy alloy coating of AlCrFeNiW_(0.2)Ti_(0.5)was designed and produced on Q235 steel via laser cladding.The microstructure,microha...To evaluate the potential of high entropy alloys for marine applications,a new high entropy alloy coating of AlCrFeNiW_(0.2)Ti_(0.5)was designed and produced on Q235 steel via laser cladding.The microstructure,microhardness and tribological performances sliding against YG6 cemented carbide,GCr15 steel and Si_(3)N_(4)ceramic in seawater were studied in detail.The AlCrFeNiW_(0.2)Ti_(0.5)coating showed an anomalous’sunflower-like’morphology and consisted of BCC and ordered B2 phases.The microhardness was approximately 692.5 HV,which was 5 times higher than substrate.The coating showed more excellent tribological performances than Q235 steel and SUS304,a typical material used in seawater environment,sliding against all three coupled balls in seawater.Besides,the wear and friction of AlCrFeNiW_(0.2)Ti_(0.5)coating sliding against YG6 in seawater were most mild.The main reason was the generation of Mg(OH)_(2),CaCO_(3),metal oxides and hydroxides and the formation of protective tribo-film on the worn surface of AlCrFeNiW_(0.2)Ti_(0.5)coating in the process of reciprocated sliding.This would effectively hinder the direct contact between the worn surfaces of AlCrFeNiW_(0.2)Ti_(0.5)coating and YG6 ball,resulting in a decrease of friction coefficient and wear rate.Thus the YG6 was an ideal coupled material for AlCrFeNiW_(0.2)Ti_(0.5)coating in seawater,and the coating would become a promising wear-resisting material in ocean environment.展开更多
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti...A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA.展开更多
As-cast beryllium-aluminum(Be-Al)alloy exhibits a coarse microstructure with pore defects due to a large solidification interval,greatly limiting its mechanical properties.In this research,the relationship between las...As-cast beryllium-aluminum(Be-Al)alloy exhibits a coarse microstructure with pore defects due to a large solidification interval,greatly limiting its mechanical properties.In this research,the relationship between laser surface remelting process and microstructure and hardness of as-cast Be-Al-Sc-Zr alloy was established.The experimental results demonstrated that a pore-free refined microstructure of remelted layer was obtained by controlling the parameter of effective laser energy input.The microstructure of as-cast Be-Al-Sc-Zr alloy consisted of equiaxed grains with Al phase forming a continuous frame wrapping Be phase,which was significantly refined in the remelted zone(from 25μm to 2μm).The Vickers hardness in the remelted zone(approximately 210 HV)was approximately 3 times that of as-cast Be-Al-Sc-Zr alloy.Analysis of the Vickers hardness and the Be phase size showed a good agreement with a Hall-Petch equation.In addition,transmission electron microscopy(TEM),auger electron spectroscopy(AES)and X-ray diffraction(XRD)analysis evidenced that Sc and Zr elements formed a single blocky phase Be13(Scx,Zr1-x),which was also greatly refined from 8μm to 1.5μm in the remelted zone.The results obtained in this study indicate that the laser surface remelting allowed refining the microstructure and further strengthening the Vickers hardness of Be-Al-Sc-Zr alloy.展开更多
The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG la...The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG laser to further enhance their compactness and bonding strength via orthogonal experiment design.The effects of laser remelting on the microstructure,phase compositions and mechanical properties of the as-sprayed coatings were investigated by optical microscopy,scanning electron microscope,X-ray diffraction and Vickers microhardness tester.The corrosion performance of the coatings was evaluated by both potential dynamic measurements(PDM)and electrochemical impedance spectroscopy(EIS)in a 10%NaOH solution.The results indicate that laser power of 700 W,scanning velocity of 4 mm/s,beam size of 3 mm and porosity of 1.19%are the optimized remelting process parameters.The laser-remelted coatings exhibite more homogenous structure as strong metallurgical bonding to substrates.The amorphous phases in the as-sprayed coatings crystallize toα-Fe,Fe2Si,Fe3.5B,and Fe2W phases for the high temperature and rapid solidification in the remelting process.The microhardness values of as-sprayed are in the range of 700-800 HV0.1,while the microhardness values of the remelted coatings are enhanced slightly to 750-850 HV0.1.Both PDM and EIS analysis results show that the remelted coatings exhibite relatively excellent corrosion resistance compared with the stainless steel 1Cr18Ni9Ti,however the corrosion resistance of the remelted coatings is inferior to the as-sprayed amorphous coatings.展开更多
In this study,the Zn-0.5 wt%Zr(Zn-Zr)alloy was treated by laser surface remelting(LSR),and then the microstructure and degradation mechanism of the remelting layer were investigated and compared with the original as-c...In this study,the Zn-0.5 wt%Zr(Zn-Zr)alloy was treated by laser surface remelting(LSR),and then the microstructure and degradation mechanism of the remelting layer were investigated and compared with the original as-cast alloy.The results reveal that after LSR,the bulky Zn(22)Zr phase in the original Zn-Zr alloy is dissolved and the coarse equiaxed grains transform into fine dendrites with a secondary dendrite arm space of about 100 nm.During the degradation process in simulated body fluid(SBF),the corrosion products usually concentrate at some certain areas in the original alloy,while the corrosion products distribute uniformly and loosely in the LSR-treated surface.After removing the corrosion products,it was found that the former suffers obvious pitting corrosion and then localized corrosion.The proposed mechanism is that corrosion initiates at grain boundaries and develops into the depth at some locations,and then leads to localized corrosion.For the LSR-treated sample,corrosion initiates at some active sites and propagates in all directions,corrosion takes place in the whole surface with distinctly uniform thickness reduction,while the localized corrosion and peeling of bulky Zn(22)Zr particles were eliminated.The electrochemical results also suggest the uniform corrosion of LSR-treated sample and localized corrosion of original sample.Based on the results,a new approach to regulate the corrosion mode of the biodegradable Zn alloy is proposed.展开更多
The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser c...The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.展开更多
基金Acknowledgements The authors would like to thank the financial support provided by the National Natural Science Foundation of China (No. 50971091 ), the Ministry of the Science and Technology of the People' s Republic of China ( No. 2009DFB50350 ) and the Economy and Information Commission of Shanghai Municipality (No. zx08089).
文摘High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society: Grade B (CCS-B). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS), Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating. According to the results of SEM, XRD and TEM, the cladding coating consisted of nanocrystalline embedded in amorphous phase. EDS data indicated that Nb segregated in the amorphous matrix. The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating. The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.
基金supported by the National Natural Science Foundation of China(Nos.51771041,52101036 and 51901116)the National Key Research and Development Program of China(No.2018YFE0306103).
文摘In recent years,the coating prepared by laser cladding has attracted much attention in the field of wear research.In this work,AlCrFeNiMo_(0.5)Si_(x)(x=0,0.5,1.0,1.5,2.0)high-entropy alloy coatings were designed and prepared on Q235 steel by laser cladding.The effect of Si content on microstructure,microhardness and wear resistance of the coatings was studied in detail.The results indicate that the AlCrFeNiMo_(0.5)Si_(x) highentropy alloy coatings show an excellent bonding between substrate and the cladding layer.The AlCrFeNiMo_(0.5)Si_(x) coatings are composed of nano-precipitated phase with BCC structure and matrix with ordered B2 structure.With the addition of Si,the white phase(Cr,Mo)_(3)Si with cubic structure appears in the interdendritic,and the morphology of the coating(x=2.0)transforms into lamellar eutectic-like structures.The addition of Si enhances the microhardness and significantly improves the wear resistance of the coatings.As x increases from 0 to 2.0,the average hardness of the cladding zone increases from 632 HV to 835 HV,and the wear rate decreases from 1.64×10^(-5) mm^(3)·(N·m)^(-1) to 5.13×10^(-6) mm^(3)·(N·m)^(-1).When x≥1.5,the decreasing trend of the wear rate gradually slows down.The wear rates of Si1.5 and Si2.0 coatings are 5.85×10^(-6) mm^(3)·(N·m)^(-1) and 5.13×10^(-6) mm^(3)·(N·m)^(-1),respectively,which is an order of magnitude lower than that of Q235 steel.
文摘The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.
基金This study was supported by the Youth Program of National Natural Science Foundation of China(No.51605473)the National Key R&D Program of China(No.2018YFB1105801).
文摘FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy(Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm-2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.
文摘The microstructure and wear resistance of a cast Al-Si alloy coated with metal and rare earth elements and treated by the laser rapid melt-solidification(LRMS)are studied in the pres- ent work.Optical and SEM micrographic analyses showed that a superfine microstructure was ob- tained,and the hardness was remarkably enhanced by the LRMS treatment.Wear test showed that the rapid melt-solidified microstructure had higher wear resistance than that treated by ordinary solid solution treatment.
文摘The microstructure and sliding wear property of laser clad TiN-composite coating on steel 1045 were analyzed by SEM, EPMA, XRD, EDAX techniques and a pin-on-ring dry sliding wear testing machine. An excellent fusion bonding with low dilution and absence of cracks was obtained under the laser cladding conditions of specific energy and power density in the range 5 to 20kJ/cm ̄2 and 3.5 to 5kW/cm ̄2 respectively. The clad layers have been characterized by metallurgical examination. The bonding zone about 6μm thick is analyzed to be γ-Ni solid solution growing from the bottom of molten pool in the form of planar crystal morphology. γ-Ni, TiN particles and fine eutectic of γ-Ni+(Fe, Cr)_(23)C_6, in the interdendritic regions are observed. A large number of TiN particles in irregular shapes are remained afer laser cladding. Partial dissolution appearing on the edges of original TiN particulates and their growth during resolidification are found in the clad region. The TiN-reinforced composite coating produced by laser cladding possesses a good wear resistance n this study. An adhesive wear with a regular scale-like feature on the worn surface was observed.
基金Supported by China National Nuclear Power Plant Operation(QS4FY-22003224)。
文摘FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are composed of face-centered cubic+body-centered cubic phases.Additionally,the microstructure of the coatings consists of columnar dendrites.With the simultaneous addition of both Ni and Co elements,the columnar dendritic grains are gradually refined in the coating.Moreover,the FeCrAlCuNiCo HEA coating exhibits excellent friction performance with the coating hardness of 5847.7 MPa,friction factor of 0.45,and wear rate of 3.72×10^(−5) mm^(3)·N^(−1)·m^(−1).The predominant wear mechanism is the adhesive wear and abrasive wear.
基金Natural Science Foundation of Liaoning Province(No.2019-MS-247)Liao Ning Revitalization Talents Program(No.XLYC1807178)+1 种基金Research Fund of the State Key Laboratory of Solidification Processing(No.SKLSP202011)International Cooperation Project of Guangdong Province(No.2021A0505030052)。
文摘High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this study,AlCoCrFe Ni(TiN)_(x)(x:molar ratio;x=0,0.2,0.4,0.6,0.8,1.0)HEA coatings were fabricated on Q235 steel by plasma spray first and then subjected to laser remelting.The experimental results confirm that plasma spray together with post laser remelting could result in the in-situ formation of TiN-Al_(2)O_(3) ceramic particles and cuboidal B2 phase in the AlCoCrFeNi(TiN)_(x) HEA coatings.The in-situ TiN-Al_(2)O_(3) and nano-cuboidal B2 precipitation phase strengthened the coatings and improved their wearresistance properties.Due to the dispersion of hard phase and nano-particles resulting from second heating,the microhardness of the Al Co Cr Fe Ni(Ti N)coatings significantly increased from 493 to 851 HV after laser remelting.For the same reasons,the wear-resistance performance was also significantly promoted after laser remelting.
基金financially supported by the National Natural Science Foundation of China(Nos.51771041,51774065,51671044 and 51901116)the National Key Research and Development Program of China(No.2017YFA0403803)。
文摘To evaluate the potential of high entropy alloys for marine applications,a new high entropy alloy coating of AlCrFeNiW_(0.2)Ti_(0.5)was designed and produced on Q235 steel via laser cladding.The microstructure,microhardness and tribological performances sliding against YG6 cemented carbide,GCr15 steel and Si_(3)N_(4)ceramic in seawater were studied in detail.The AlCrFeNiW_(0.2)Ti_(0.5)coating showed an anomalous’sunflower-like’morphology and consisted of BCC and ordered B2 phases.The microhardness was approximately 692.5 HV,which was 5 times higher than substrate.The coating showed more excellent tribological performances than Q235 steel and SUS304,a typical material used in seawater environment,sliding against all three coupled balls in seawater.Besides,the wear and friction of AlCrFeNiW_(0.2)Ti_(0.5)coating sliding against YG6 in seawater were most mild.The main reason was the generation of Mg(OH)_(2),CaCO_(3),metal oxides and hydroxides and the formation of protective tribo-film on the worn surface of AlCrFeNiW_(0.2)Ti_(0.5)coating in the process of reciprocated sliding.This would effectively hinder the direct contact between the worn surfaces of AlCrFeNiW_(0.2)Ti_(0.5)coating and YG6 ball,resulting in a decrease of friction coefficient and wear rate.Thus the YG6 was an ideal coupled material for AlCrFeNiW_(0.2)Ti_(0.5)coating in seawater,and the coating would become a promising wear-resisting material in ocean environment.
文摘A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA.
基金co-supported by the National Key Technologies R&D Program of China(No.2016YFB0700404)。
文摘As-cast beryllium-aluminum(Be-Al)alloy exhibits a coarse microstructure with pore defects due to a large solidification interval,greatly limiting its mechanical properties.In this research,the relationship between laser surface remelting process and microstructure and hardness of as-cast Be-Al-Sc-Zr alloy was established.The experimental results demonstrated that a pore-free refined microstructure of remelted layer was obtained by controlling the parameter of effective laser energy input.The microstructure of as-cast Be-Al-Sc-Zr alloy consisted of equiaxed grains with Al phase forming a continuous frame wrapping Be phase,which was significantly refined in the remelted zone(from 25μm to 2μm).The Vickers hardness in the remelted zone(approximately 210 HV)was approximately 3 times that of as-cast Be-Al-Sc-Zr alloy.Analysis of the Vickers hardness and the Be phase size showed a good agreement with a Hall-Petch equation.In addition,transmission electron microscopy(TEM),auger electron spectroscopy(AES)and X-ray diffraction(XRD)analysis evidenced that Sc and Zr elements formed a single blocky phase Be13(Scx,Zr1-x),which was also greatly refined from 8μm to 1.5μm in the remelted zone.The results obtained in this study indicate that the laser surface remelting allowed refining the microstructure and further strengthening the Vickers hardness of Be-Al-Sc-Zr alloy.
基金National Natural Science Foundation of China(50805104)
文摘The Fe-based amorphous alloy coatings with different porosities were deposited on Q235 steel substrates by means of atmospheric plasma spraying(APS).The as-sprayed coatings were remelted by the facility of a Nd:YAG laser to further enhance their compactness and bonding strength via orthogonal experiment design.The effects of laser remelting on the microstructure,phase compositions and mechanical properties of the as-sprayed coatings were investigated by optical microscopy,scanning electron microscope,X-ray diffraction and Vickers microhardness tester.The corrosion performance of the coatings was evaluated by both potential dynamic measurements(PDM)and electrochemical impedance spectroscopy(EIS)in a 10%NaOH solution.The results indicate that laser power of 700 W,scanning velocity of 4 mm/s,beam size of 3 mm and porosity of 1.19%are the optimized remelting process parameters.The laser-remelted coatings exhibite more homogenous structure as strong metallurgical bonding to substrates.The amorphous phases in the as-sprayed coatings crystallize toα-Fe,Fe2Si,Fe3.5B,and Fe2W phases for the high temperature and rapid solidification in the remelting process.The microhardness values of as-sprayed are in the range of 700-800 HV0.1,while the microhardness values of the remelted coatings are enhanced slightly to 750-850 HV0.1.Both PDM and EIS analysis results show that the remelted coatings exhibite relatively excellent corrosion resistance compared with the stainless steel 1Cr18Ni9Ti,however the corrosion resistance of the remelted coatings is inferior to the as-sprayed amorphous coatings.
文摘In this study,the Zn-0.5 wt%Zr(Zn-Zr)alloy was treated by laser surface remelting(LSR),and then the microstructure and degradation mechanism of the remelting layer were investigated and compared with the original as-cast alloy.The results reveal that after LSR,the bulky Zn(22)Zr phase in the original Zn-Zr alloy is dissolved and the coarse equiaxed grains transform into fine dendrites with a secondary dendrite arm space of about 100 nm.During the degradation process in simulated body fluid(SBF),the corrosion products usually concentrate at some certain areas in the original alloy,while the corrosion products distribute uniformly and loosely in the LSR-treated surface.After removing the corrosion products,it was found that the former suffers obvious pitting corrosion and then localized corrosion.The proposed mechanism is that corrosion initiates at grain boundaries and develops into the depth at some locations,and then leads to localized corrosion.For the LSR-treated sample,corrosion initiates at some active sites and propagates in all directions,corrosion takes place in the whole surface with distinctly uniform thickness reduction,while the localized corrosion and peeling of bulky Zn(22)Zr particles were eliminated.The electrochemical results also suggest the uniform corrosion of LSR-treated sample and localized corrosion of original sample.Based on the results,a new approach to regulate the corrosion mode of the biodegradable Zn alloy is proposed.
基金Funded by the Shanghai Science and Technology Committee Innovation(17JC1400600 and 17JC1400601)the National Natural Science Foundation of China(51471105)+1 种基金the Graduate Students’Innovative Research Projects of Shanghai University of Engineering Science(17KY0513)the College Student Innovation Training Projects of Shanghai University of Engineering Scienc(CX1805007)
文摘The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.