期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
Picosecond Laser Surface Texturing of a Stavax Steel Substrate for Wettability Control 被引量:6
1
作者 Xincai Wang Hongyu Zheng +2 位作者 Yinchi Wan Wenhe Feng Yee Cheong Lam 《Engineering》 SCIE EI 2018年第6期816-821,共6页
In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main ... In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning. 展开更多
关键词 PICOSECOND laser surface texturing Stavax STEEL POLYMER HYDROPHOBICITY
下载PDF
Cooperative effect of surface alloying and laser texturing on tribological performance of lubricated surfaces 被引量:5
2
作者 万轶 熊党生 李建亮 《Journal of Central South University》 SCIE EI CAS 2010年第5期906-910,共5页
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl... The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricated surface
下载PDF
Effect of Laser Texturing Parameters on Wettability of Nickel Surface
3
作者 Junyuan Huang Songbo Wei +3 位作者 Lixin Zhang Yingying Yang Song Yang Zejun Shen 《Journal of Materials Science and Chemical Engineering》 2018年第7期163-168,共6页
Wettability is an important characteristic of solid surfaces. Enhancing the surface wettability is very important for improving the properties of materials. Superhydrophobic materials show good prospects for developme... Wettability is an important characteristic of solid surfaces. Enhancing the surface wettability is very important for improving the properties of materials. Superhydrophobic materials show good prospects for development in areas such as self-cleaning, anti-fog snow, anti-icing, and corrosion resistance. It has become a hot spot to develop a superhydrophobic surface with low surface free energy and good anti-adhesion properties. In this paper, nanosecond pulsed lasers were used to texture the nickel surface, and the different texturing speeds were changed. Combined with the ultrasonic treatment of low surface energy materials, nickel surfaces with different contact angles were obtained. The experimental results show that low surface energy substances can increase the contact angle of nickel surface but the extent of increase is limited. Laser microstructure induces micro & nanostructures. Ultrasonic action can adsorb certain low surface energy substances on the surface, greatly improving the hydrophobic properties of the surface, the contact angle with water up to 152? and the roll angle is less than 2?, and with the increase of the laser texturing speed, the contact angle of the nickel surface shows a decreasing trend. 展开更多
关键词 laser texturing NICKEL surface WETTABILITY Micro/Nano Structure
下载PDF
Continuous Wave Diode Laser Surface Texturing of Austenitic and Pearlitic Steels
4
作者 Sulthan Mohiddin Shariff Suresh Koppoju +2 位作者 Tapan Kumar Pal Padmanabham Gadhe Shrikant Viswanath Joshi 《Materials Sciences and Applications》 2015年第10期889-906,共18页
Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zon... Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zone melting etc., is reported for the first time in continuous wave diode laser processing of steels. Influence of laser interaction time on surface morphology/topology of austenitic manganese and pearlitic steels is investigated utilizing a wide rectangular multi-mode diode laser beam. X-ray diffraction analysis of the laser treated austenitic steel surface showed strong texturing influence, with preferred crystallographic orientation of γ-Fe crystals in the (200) plane, which increased with interaction time. In case of pearlitic steel, no such texturing influence could be observed. The free surface topologies were also observed to be different in each case, with well-aligned domes of γ-Fe observed in laser treated austenitic steel as compared to randomly oriented fine domes of metal oxides in pearlitic one. In situ surface temperature measurement during laser irradiation indicated higher temperature on pearlitic steel than in austenitic manganese steel owing to its lower effective thermal conductivity associated with higher oxide film formation. 展开更多
关键词 Diode laser texturing Pearlitic STEEL AUSTENITIC Manganese STEEL Directional Solidification Oxidation surface Morphology surface Topology
下载PDF
Mechanical Properties and Microstructure of Bionic Non-Smooth Stainless Steel Surface by Laser Multiple Processing 被引量:7
5
作者 Jin-zhong Lu~(1,2) ,Chao-jun Yang~(1,2) ,Lei Zhang~(1,2),Ai-xin Feng ~(1,2) ,Yin-fang Jiang~(1,2)1.School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,P.R.China2.Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing,Zhenjiang 212013,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期180-185,共6页
Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, sa... Laser multiple processing, i.e. laser surface texturing and then Laser Shock Processing (LSP), is a new surface processing technology for the preparation of bionic non-smooth surfaces. Based on engineering bionics, samples of bionic non-smooth surfaces of stainless steel 0Crl 8Ni9 were manufactured in the form of reseau structure by laser multiple processing. The mechanical properties (including microhardness, residual stress, surface roughness) and microstructure of the samples treated by laser multiple processing were compared with those of the samples without LSP The results show that the mechanical properties of these samples by laser multiple processing were clearly improved in comparison with those of the samples without LSP The mechanisms underlying the improved surface microhardness and surface residual stress were analyzed, and the relations between hardness, comnressive residual stress and roughness were also presented. 展开更多
关键词 laser multiple processing laser surface texturing laser shock processing stainless steel 0Cr18Ni9 MICROHARDNESS residual stress roughness
下载PDF
Effect of laser textured surface with different patterns on tribological characteristics of bearing material AISI 52100 被引量:8
6
作者 PAUL JOSHUA S DINESH BABU P 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2210-2219,共10页
Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of ... Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped. 展开更多
关键词 laser surface micro texturing AISI52100 3D surface roughness WEAR scanning electron microscopy
下载PDF
Effects of laser surface melting on crystallographic texture, microstructure, elastic modulus and hardness of Ti-30Nb-4Sn alloy 被引量:2
7
作者 Leonardo FANTON Nelson Batista de LIMA +3 位作者 Emilio Rayon ENCINAS Vicente Amigo BORRAS Conrado Ramos Moreira AFONSO Joao Batista FOGAGNOLO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期392-404,共13页
The biocompatibility of orthopedic implants is closely related to their elastic modulus and surface properties.The objective of this study was to determine the effects of cold rolling,recrystallization and laser surfa... The biocompatibility of orthopedic implants is closely related to their elastic modulus and surface properties.The objective of this study was to determine the effects of cold rolling,recrystallization and laser surface melting(LSM)on the microstructure and mechanical properties of a biphase(α″+β)Ti-30Nb-4Sn alloy.X-ray diffraction(XRD)texture analysis of the cold-rolled substrate revealed the[302]α″//ND texture component,while analysis of the recrystallized substrate showed the[302]α″//ND and[110]α″//ND components.Theβ-phase texture could not be directly measured by XRD,but the presence of the[111]β//ND texture component was successfully predicted by considering the orientation relationship between theα″andβphases.Nanoindentation measurements showed that the elastic modulus of the cold-rolled substrate(63GPa)was lower than that of the recrystallized substrate(74GPa).Based on the available literature and the results presented here,it is suggested that this difference is caused by the introduction of crystal defects during cold deformation.The combined nanoindentation/EBSD analysis showed that the nanoindentation results are not affected by crystal orientation.LSM of the deformed alloy produced changes in hardness,elastic modulus and crystallographic texture similar to those produced by recrystallization heat treatment,creating a stiffness gradient between surface and substrate. 展开更多
关键词 titanium alloy cold rolling laser surface melting RECRYSTALLIZATION crystallographic texture stiffness-graded material
下载PDF
Laser Surface Textured PTFE Inhibitation for Stick-Slip Phenomenon Under Boundary Lubrication 被引量:1
8
作者 LEI Ming WANG Xiaolei HUANG Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期93-101,共9页
When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is t... When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients. 展开更多
关键词 machine tool laser surface texturing stick-slip phenomenon difference between the dynamic and static friction coefficients
下载PDF
Realization of laser textured brass surface via temperature tuning for surface wettability transition 被引量:2
9
作者 Huangping Yan Mohamed Raiz B Abdul Rashid +2 位作者 Si Ying Khew Fengping Li Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第6期587-592,共6页
Superhydrophobic surfaces have attracted extensive interests and researches into their fundamentals and potential applications.Laser texturing provides the convenience to fabricate the hierarchical micro/nanostructure... Superhydrophobic surfaces have attracted extensive interests and researches into their fundamentals and potential applications.Laser texturing provides the convenience to fabricate the hierarchical micro/nanostructures for superhydrophobicity.However,after laser texturing,long wettability transition time from superhydrophilicity to superhydrophobicity is a barrier to mass production and practical industrial applications.External stimuli have been applied to change the surface composition and/or the surface morphology to reduce wettability transition time.Herein,by temperature tuning,wettability transition of laser textured brass surfaces is investigated.Scanning electron microscopy and surface contact angle measurement are employed to characterize the surface morphology and wettability behavior of the textured brass surfaces.By low-temperature heating(100℃~150℃),partial deoxidation of the top Cu O layer occurs to form hydrophobic Cu_2O.Therefore,superhydrophobicity without any chemical coating and surface modification could be achieved in a short time.Furthermore,after low-temperature heating,the low adhesive force between the water droplet and the sample surface is demonstrated for the laser textured brass surface.This study provides a simple method to fabricate the micro/nanostructure surfaces with controllable wettability for the potential applications. 展开更多
关键词 纳米结构 激光技术 发展现状 润湿性
下载PDF
Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review
10
作者 Arash Fattah-alhosseini Razieh Chaharmahali 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4390-4406,共17页
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce... The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes. 展开更多
关键词 Mg and its alloy laser surface texturing Corrosion behavior PEO process
下载PDF
Effects of Laser Pulse Numbers on Surface Biocompatibility of Titanium for Implant Fabrication
11
作者 Mitra Radmanesh Amirkianoosh Kiani 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期168-175,共8页
Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents th... Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents the effects of laser surface texturing on the surface topography properties, roughness, and wettability of thin titanium sheets, which consequently enhance the biocompatibility of this material. Creating line patterns across the surfaces, the titanium samples are prepared using variety of laser parameters. The apatite inducing ability of each sample is tested through the use of simulated body fluid (SBF). The final biocompatibility level of titanium samples is analyzed through wettability, surface angle measurements, and average surface temperature profile. Overall, the effects of laser parameter, pulse numbers, upon the biocompatibility of titanium are thoroughly examined, with results indicating that a scanning speed of 100 μm/ms results in desirable bone type apatite inducing abilities across the surface of treated titanium sheets. 展开更多
关键词 laser surface Micro texturing TITANIUM IMPLANT Biocompatability Hydroxyapatite Deposition
下载PDF
Improvement of Surface Morphology of Yttrium-Stabilized Zirconia Films Deposited by Pulsed Laser Deposition on Rolling Assisted Biaxially Textured Substrate Tapes
12
作者 王梦麟 刘林飞 李贻杰 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期101-105,共5页
The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we f... The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we focus on the influence of pulsed laser frequency and target crystalline type on surface morphology of YSZ films deposited by pulsed laser deposition (PLD) on rolling assisted biaxially textured substrate tapes. Usually two kinds of particles are observed in the YSZ layer: randomly distributed ones on the whole film and self-assembled ones along grain boundaries. SEM images are used to prove that particles can be partly removed when choosing dense targets of single crystalline. Lower frequency of pulsed laser also contributes to a smoother film surface. TEM images are used to view the crystalline structure of thin film. Thus we can obtain a basic understanding of how to prepare a particle-free YSZ buffer layer for YBCO in optimized conditions using PLD. The YBCO layer with nice structure and critical current density of around 5 MA/cm2 can be reached on smooth YSZ samples. 展开更多
关键词 YSZ Improvement of surface Morphology of Yttrium-Stabilized Zirconia Films Deposited by Pulsed laser Deposition on Rolling Assisted Biaxially Textured Substrate Tapes PLD
下载PDF
Tribological Properties of Dimpled Surface Alloying Layer on Carbon Steel 被引量:2
13
作者 万轶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期218-222,共5页
The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and... The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricating state
下载PDF
Friction Behavior of Laser Beam Texture Sheets and Shot Blast Sheets
14
作者 Luo-ping Xu Xu-bang Qin +1 位作者 Hong-sheng Huang Wen-hua Bao 《Advances in Manufacturing》 2000年第1期68-71,共4页
The friction behaviors of steel sheets at the corners of die and punch, under different conditions of surface textures (laser beam texture, shot blast texture), steel sheet rolling directions and lubricants, are studi... The friction behaviors of steel sheets at the corners of die and punch, under different conditions of surface textures (laser beam texture, shot blast texture), steel sheet rolling directions and lubricants, are studied by both SEM micro surface observations and friction coefficients measurement. The results show the friction coefficient at the corner of die is smaller than that at the corner of punch during stamping. The friction coefficient along rolling direction is lower than that along transverse direction, especially at the corner of punch. Differential initial surface texture has different sensitivity of friction coefficient to the lubricants. The sheet surface with laser beam texture (LBT) has shown a stronger adaptation to various lubricants than that with shot blast texture (SBT). After stamping, the surface with laser beam texture is still clear, the shot blast texture is indistinct. 展开更多
关键词 surface texture laser beam texture shot blast texture friction coefficient
下载PDF
基于响应面法的Ni60/WC涂层表面织构皮秒分束工艺参数预测研究
15
作者 钟林 伍小龙 +8 位作者 王国荣 罗敏敏 王紫萱 魏刚 王杰 冷晓栋 曾秦涛 张文超 敬佳佳 《表面技术》 EI CAS CSCD 北大核心 2024年第9期167-179,共13页
目的实现六分束激光在Ni60/WC涂层表面烧蚀目标织构激光加工工艺参数的精确选择。方法基于CCD响应面法,设计在不同的激光工艺参数下对Ni60/WC涂层表面进行织构烧蚀试验,以激光频率、扫描次数、扫描速度为影响因素,以圆凹坑织构直径、深... 目的实现六分束激光在Ni60/WC涂层表面烧蚀目标织构激光加工工艺参数的精确选择。方法基于CCD响应面法,设计在不同的激光工艺参数下对Ni60/WC涂层表面进行织构烧蚀试验,以激光频率、扫描次数、扫描速度为影响因素,以圆凹坑织构直径、深度及由其直径和深度综合加权所得的综合目标为响应目标,建立目标织构所需激光工艺参数的预测模型,以织构直径、深度及综合目标作为优化条件,对预测模型进行实验验证。结果扫描次数对织构直径的影响最显著,单个脉冲光斑上所聚集的能量大小是影响织构直径误差的关键因素。对织构深度影响最显著为扫描次数和频率,织构深度与扫描次数、频率呈正相关,不同因素间的交互作用是影响织构加工结果的关键。通过对预测模型所优选的参数进行实验验证发现,以织构直径和深度、综合目标建立的预测模型优选工艺参数所加工圆凹坑织构的质量评价指标与其预测指标的误差率分别为19.37%、3.57%。功率为6 W时,六分束激光加工最优工艺参数为速度5500 mm/s、频率400 kHz、扫描2次。结论通过综合目标建立的Ni60/WC涂层表面圆凹坑织构六分束激光加工参数优选预测模型精确程度较高,能够实现Ni60/WC涂层表面加工所需织构激光参数的准确预测,为涂层表面织构加工激光参数精确选择提供了理论依据。 展开更多
关键词 皮秒激光 分束激光加工 Ni60/WC 圆凹坑织构 CCD响应面法 参数预测
下载PDF
内燃机活塞环材料及表面处理技术研究现状与发展趋势
16
作者 刘伟 谭泽飞 +5 位作者 陈文刚 戴一帆 袁浩恩 程家豪 魏北朝 周意皓 《表面技术》 EI CAS CSCD 北大核心 2024年第12期36-49,共14页
活塞环是内燃机中重要的零部件之一,该部件的摩擦损耗占内燃机总摩擦损失的26%。因此,活塞环材料的选用及其表面处理研究对于优化提升内燃机性能、延长服役寿命具有重要意义。简单介绍并总结了内燃机活塞环常用材料及其发展趋势,详细综... 活塞环是内燃机中重要的零部件之一,该部件的摩擦损耗占内燃机总摩擦损失的26%。因此,活塞环材料的选用及其表面处理研究对于优化提升内燃机性能、延长服役寿命具有重要意义。简单介绍并总结了内燃机活塞环常用材料及其发展趋势,详细综述了激光表面织构技术、表面涂层技术以及表面复合技术在内燃机活塞环减摩抗磨方面的研究和应用现状。其中,激光表面织构技术(LST)可起到接纳磨屑、保持油膜等作用,从而降低活塞环表面摩擦和磨损,但由于织构形貌和几何参数特征对摩擦学性能的影响较为复杂,仍需结合实际工况进一步研究并优化。以镀铬、热喷涂、气相沉积及激光熔覆为代表的涂层技术也常用于活塞环的表面强化处理,但涂层材料种类繁多,难以形成统一的行业标准进而规模应用。此外,通过合理复合多种表面处理技术,比如微弧氧化与电泳沉积复合、超声滚压与离子渗氮技术复合、磁控溅射和低温离子渗硫复合等,可实现优势互补、发挥协同作用,有效改善接触表面的摩擦性能,为活塞环的减摩增寿研究开拓了新的思路。最后对未来活塞环材料开发应用及其减摩抗磨方面的研究发展进行了展望。 展开更多
关键词 活塞环 减摩抗磨 激光表面织构 表面涂层 复合处理
下载PDF
激光冲击强化9Cr18钢及协同制备表面微坑研究
17
作者 陈秀玉 林郁茹 +5 位作者 李科林 陈俊英 蒋清山 方芳 许志龙 黄国钦 《表面技术》 EI CAS CSCD 北大核心 2024年第11期193-204,共12页
目的探索9Cr18钢经激光冲击强化后,二次激光冲击制备表面微坑的可行性和相关工艺。方法利用不同工艺参数对9Cr18钢试样进行单点冲击,使用激光共聚焦对单点冲击诱导的微坑进行轮廓形貌检测,使用显微硬度仪测量微坑区域的硬度;通过激光冲... 目的探索9Cr18钢经激光冲击强化后,二次激光冲击制备表面微坑的可行性和相关工艺。方法利用不同工艺参数对9Cr18钢试样进行单点冲击,使用激光共聚焦对单点冲击诱导的微坑进行轮廓形貌检测,使用显微硬度仪测量微坑区域的硬度;通过激光冲击对9Cr18钢进行全覆盖表面强化,并进行二次激光冲击,以制备表面微坑。结果对于单点冲击,表面凹坑深度随着激光冲击能量的增大而增大,并非呈线性增大。当冲击能量为12 J时,凹坑深度达到38.39μm。对于同能量单点双次冲击,其凹坑深度比单点冲击大。当冲击能量为12 J时,双次冲击深度最大达到49.05μm。在能量梯度叠加冲击时,以6 J为第1次冲击能量,将第2次冲击能量提高到12 J,此时凹坑深度达到58.61μm。对于不同脉宽冲击,在脉宽为26 ns时,不同能量冲击的凹坑深度均达到最深。经激光冲击强化后,采用不同能量进行二次冲击,在能量为12 J时凹坑深度为19.79μm。采用不同脉宽进行二次冲击,在脉宽为22、26 ns时,凹坑深度为13.61μm。结论表面微坑的深度随着能量、脉冲宽度和冲击次数的增加而增加;表面微坑的硬度随着能量和次数的增加而增大,硬度随着脉宽的增加呈先减小后增大的趋势;采用激光冲击工艺协同处理,可以强化9Cr18钢表面,并制备出一定深度的微坑,可为激光冲击对9Cr18钢的强化及表面织构化提供理论指导和工艺基础。 展开更多
关键词 9Cr18钢 激光诱导 表面织构 表面形貌 激光参数
下载PDF
SLM成形表面织构对TC4钛合金干摩擦磨损性能的影响
18
作者 冯青源 田斌 +2 位作者 黄志刚 王子妍 冉志勇 《润滑与密封》 CAS CSCD 北大核心 2024年第4期87-94,共8页
基于一步法思路,采用金属3D打印机基于激光选区熔化(SLM)技术制备表面带有凹坑织构的TC4钛合金试样,采用光学相机、超景深显微镜和扫描电镜观察织构成形情况,利用激光共聚焦位移测试仪和显微维氏硬度计分别测试表面粗糙度和表面硬度,在... 基于一步法思路,采用金属3D打印机基于激光选区熔化(SLM)技术制备表面带有凹坑织构的TC4钛合金试样,采用光学相机、超景深显微镜和扫描电镜观察织构成形情况,利用激光共聚焦位移测试仪和显微维氏硬度计分别测试表面粗糙度和表面硬度,在干摩擦条件下采用摩擦磨损试验仪考察不同载荷下织构密度对TC4钛合金试样摩擦学性能的影响,并使用扫描电镜对摩擦实验前后的表面形貌进行分析。研究结果表明:一步法SLM成形能够在TC4钛合金表面获得成形良好的直径500μm的织构;随着织构密度的提高,钛合金试样表面粗糙度增大,表面硬度有所降低;干摩擦条件下,提高TC4钛合金试样织构密度有利于磨屑的收集从而减少试样的三体磨损,提高载荷有利于改善摩擦副接触状态;5 N载荷下40%织构密度试样的平均摩擦因数和磨痕宽度均最小,与无织构试样相比,平均摩擦因数和磨痕宽度分别降低12%和16%;40%织构密度下,载荷提高会引起摩擦因数的降低和磨损量增大,磨损表面犁沟和片状剥落增多。在干摩擦条件下,3D打印一步法制备的表面织构可以显著改善TC4钛合金的磨粒磨损和黏着磨损。 展开更多
关键词 选区激光熔化 钛合金 表面织构 织构密度 干摩擦磨损性能
下载PDF
考虑时变效应的织构缸套润滑性能分析及试验研究
19
作者 王林森 王海霞 +4 位作者 纪敬虎 尤凤翔 刘庆升 王槐生 李东亚 《润滑与密封》 CAS CSCD 北大核心 2024年第5期71-77,共7页
内燃机缸孔内的时变效应和气压变化对活塞环受力影响不可忽略,而织构形貌参数对发动机油耗性能的影响也有待深入研究。为此,构建考虑时变效应和缸内气体压力变化的织构化缸套-活塞环摩擦副的流体动压润滑模型,采用多重网格法求解模型获... 内燃机缸孔内的时变效应和气压变化对活塞环受力影响不可忽略,而织构形貌参数对发动机油耗性能的影响也有待深入研究。为此,构建考虑时变效应和缸内气体压力变化的织构化缸套-活塞环摩擦副的流体动压润滑模型,采用多重网格法求解模型获得润滑油膜压力分布规律,进而获得缸套-活塞环间的最小油膜厚度和摩擦力,并针对装配织构缸套的发动机开展台架试验。计算结果表明:缸内气体压力变化影响活塞环径向受力,时变效应使缸套-活塞环受挤压效应的影响;织构化缸套能够增加润滑油膜厚度、减少摩擦力,当微凹坑深度为4~7μm,织构面积密度较小如为5%、10%时,能够获得较佳的最小油膜厚度与摩擦力值。台架试验表明,与原发动机相比,装配织构缸套的发动机油耗性能明显改善,在中高转速下燃油耗降幅较为显著,油耗最大下降14.5%,而24 h机油耗减少26.48%。 展开更多
关键词 表面织构 缸套-活塞环 润滑性能 台架试验 油耗
下载PDF
液体辅助激光加工织构及表面摩擦特性研究
20
作者 黄珂 杨发展 +3 位作者 扈伟昊 林云龙 杨宇 刘朝伟 《机床与液压》 北大核心 2024年第2期62-67,共6页
为了缓解切削加工钛合金等难加工材料过程中存在的刀具磨损等问题,采用激光器分别在空气介质和液体辅助条件下在YG6硬质合金刀具表面加工直线沟槽织构,在UMT直线往复摩擦磨损试验机上测试了不同工艺加工所得织构刀具的摩擦及磨损性能,... 为了缓解切削加工钛合金等难加工材料过程中存在的刀具磨损等问题,采用激光器分别在空气介质和液体辅助条件下在YG6硬质合金刀具表面加工直线沟槽织构,在UMT直线往复摩擦磨损试验机上测试了不同工艺加工所得织构刀具的摩擦及磨损性能,通过体视显微镜对磨损形貌进行表征分析,采用计算流体力学方法对试验进行模拟仿真,并结合流体动力学分析,探究织构刀具在润滑条件下的减摩机制。结果表明:激光加工工艺显著影响硬质合金刀具表面在切削液润滑条件下的摩擦磨损行为,液体辅助激光加工所得织构表面表现出较好的抗摩擦磨损性能,摩擦因数相对于无织构刀具表面降低了78.2%,主要是由于在摩擦过程中刀具-工件接触区的油膜产生了较好的楔形效应,改善了摩擦过程中的润滑状态,提高了摩擦学性能。 展开更多
关键词 表面织构 液体辅助激光加工 摩擦磨损 动压润滑
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部