期刊文献+
共找到1,208篇文章
< 1 2 61 >
每页显示 20 50 100
Effect of solution treatment on the microstructure,phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying
1
作者 Rui Xi Hao Jiang +5 位作者 Guichuan Li Zhihui Zhang Huiliang Wei Guoqun Zhao Jan Van Humbeeck Xiebin Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期202-223,共22页
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap... Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts. 展开更多
关键词 shape memory alloy NiTiNb laser powder bed fusion in-situ alloying heat treatment
下载PDF
Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review 被引量:6
2
作者 Shuaishuai Wei Jinliang Zhang +6 位作者 Lei Zhang Yuanjie Zhang Bo Song Xiaobo Wang Junxiang Fan Qi Liu Yusheng Shi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期1-29,共29页
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi... NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future. 展开更多
关键词 NiTi shape memory alloys laser powder bed fusion transformation behavior thermomechanical response lattice structures
下载PDF
Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
3
作者 Da-Wei Li Tao Wang +7 位作者 Xiao-Lei Yin Li Wang Jia-Mei Li Hui Yu Yong Cui Tian-Xiong Zhang Xing-Qiang Lu Guang Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期346-353,共8页
We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spec-tral shaping,which uses the existing Nd:glass amplifier chain of the SG PW laser.Compared to the amplifie... We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spec-tral shaping,which uses the existing Nd:glass amplifier chain of the SG PW laser.Compared to the amplified pulse with a gain-narrowing effect,the required parameters of injected pulse energy,spectral bandwidth,and shape are analyzed,to-gether with their influence on the system B-integral,energy output capability,and temporal intensity contrast.A bandwidth expansion to 7 nm by using LiNbO_(3) birefringent spectral shaping resulted in an output energy of 2 kJ in a proof-of-principle experiment.The results are consistent with the theoretical prediction which suggests that the amplifier chain of SG PW laser is capable of achieving 6 kJ at the bandwidth of 7 nm and the B-integral<π.This will support a 10 PW laser with a compressed pulse energy of 4.8 kJ(efficiency=80%)at 480 fs. 展开更多
关键词 SG PW laser bandwidth expansion B-integral spectral shaping
下载PDF
Microstructure and properties of laser micro welded joint of TiNi shape memory alloy 被引量:6
4
作者 龚伟怀 陈玉华 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2044-2048,共5页
Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied... Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied. The results show that using impulse laser can realize good butt welding of TiNi SMA sheet, tensile strength of welded joint is 683 MPa, which achieves 97% of that of cold rolled base metal, and the fracture mode of welded joint is ductile type as well as base metal. The welded joint can be divided into four zones according to grain size and microstructure. The microstructures of welded seam center zone are fine equiaxed crystals and the microstructures of both lower surface and upper surface edge zones are columnar crystals. When welded joint is vacuum annealed after welding, the phase transformation process is basically similar to the annealed base metal. 展开更多
关键词 TiNi shape memory alloy laser micro welding microstructure properties phase transformation behavior
下载PDF
Numerical Simulation of Multi-track and Multi-layer Temperature Field on Laser Direct Metal Shaping 被引量:8
5
作者 LONG Risheng~(1,2) LIU Weijun~1 (1.Advanced Manufacture Lab,Shenyang Institute of Automation,Shenyang 110016,China, 2.Graduate School,Chinese Academy of Sciences,Beijing 100039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1111-1116,共6页
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce... To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS. 展开更多
关键词 laser DIRECT METAL shaping transient temperature field numerical simulation
下载PDF
Additive Manufacturing of Ceramic Structures by Laser Engineered Net Shaping 被引量:7
6
作者 NIU Fangyong WU Dongjiang +1 位作者 MA Guangyi ZHANG Bi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1117-1122,共6页
Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this... Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this problem, direct fabrication of Al2O3 ceramic structures is conducted by laser engineered net shaping system and pure ceramic powders. Grain refinement strengthening method by doping Zr O2 and dispersion strengthening method by doping Si C are proposed to suppress cracks in fabricating Al2O3 structure. Phase compositions, microstructures as well as mechanical properties of fabricated specimens are then analyzed. The results show that the proposed two methods are effective in suppressing cracks and structures of single-bead wall, arc and cylinder ring are successfully deposited. Stable phase of α-Al2O3 and t-Zr O2 are obtained in the fabricated specimens. Micro-hardness higher than 1700 HV are also achieved for both Al2O3 and Al2O3/Zr O2, which are resulted from fine directional crystals generated by the melting-solidification process. Results presented indicate that additive manufacturing is a very attractive technique for the production of high-performance ceramic structures in a single step. 展开更多
关键词 laserS net shaping ALUMINA CERAMICS additive manufacturing
下载PDF
Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy 被引量:4
7
作者 陈俐 巩水利 +1 位作者 姚伟 胡伦骥 《China Welding》 EI CAS 2004年第1期1-6,共6页
The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO_2 laser and by YAG laser were compare... The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO_2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to “X” shape, and weld of CO_2 laser welding is “nail-head” shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO_2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO_2 laser weld is a little finer than YAG laser weld. According the research CO_2 laser is better than YAG laser for welding of BT20 titanium alloy. 展开更多
关键词 titanium alloy laser welding CO_2 laser YAG laser weld shape MICROSTRUCTURES mechanical properties
下载PDF
Microstructures and mechanical properties of laser-welded TiNi shape memory alloy and stainless steel wires 被引量:4
8
作者 李洪梅 孙大千 +2 位作者 韩耀武 董鹏 刘畅 《China Welding》 EI CAS 2010年第3期1-5,共5页
The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests w... The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests were carried out to examine the mechanical properties and microhardness distribution of the welded joint. The results show that the joint has the non-homogeneous microstructure and element distribution. The brittle phases such as Fe2 Ti , Fe Ti , Cr2 Ti , Ti3 Ni4, Feo 2 Ni4.s Ti5 and TiN mainly segregate in rich Ti region of fusion zone. The laser-welded joint has the tensile strength of 298 MPa with the elongation of 3.72 % and exhibits the brittle fracture features on the fracture surfaces. The reasons for low joint strength were discussed in this investigation. 展开更多
关键词 laser welding TiNi shape memory alloy stainless steel microstructure mechanical properties
下载PDF
Comparison of Cu−Al−Ni−Mn−Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy 被引量:6
9
作者 Dennis GERA Jonadabe SANTOS +1 位作者 Cláudio SKIMINAMI Piter GARGARELLA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3322-3332,共11页
This work aimed to investigate and critically analyze the differences in microstructural features and thermal stability of Cu−11.3Al−3.2Ni−3.0Mn−0.5Zr shape memory alloy processed by selective laser melting(SLM)and co... This work aimed to investigate and critically analyze the differences in microstructural features and thermal stability of Cu−11.3Al−3.2Ni−3.0Mn−0.5Zr shape memory alloy processed by selective laser melting(SLM)and conventional powder metallurgy.PM specimens were produced by sintering 106−180μm pre-alloyed powders under an argon atmosphere at 1060°C without secondary operations.SLM specimens were consolidated through melting 32−106μm pre-alloyed powders on a Cu−10Sn substrate.Mechanical properties were measured through Vickers hardness testing.Differential scanning calorimetry was conducted to assess the martensitic transformation temperatures.X-ray diffraction patterns were collected to identify the metallurgical phases.Optical and scanning electron microscopy was used to analyze the microstructural features.b′1 martensite was found,irrespective of the processing route,although coarser martensitic variants were present in PM-specimens.In conventional powder metallurgy samples,intergranular eutectoid constituents and stabilized austenite also formed at room temperature.PM-specimens showed similar average hardness values to the SLM-specimens,albeit with high standard deviation linked to the porosity.The specimens processed by SLM showed reversible martensitic transformation(T0=171°C).PM-processed specimens did not show shape memory effects. 展开更多
关键词 shape memory alloys powder metallurgy additive manufacturing selective laser melting Cu-based alloys
下载PDF
Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion 被引量:7
10
作者 Wei Chen Dongdong Gu +3 位作者 Jiankai Yang Qin Yang Jie Chen Xianfeng Shen 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期189-205,共17页
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica... Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM. 展开更多
关键词 additive manufacturing laser powder bed fusion gradient lattice structures deformation behavior shape memory effect
下载PDF
ON THE COMPOSITION UNIFORMITY AND SHAPE COEFFICIENT OF MOLTEN POOL BY LASER ALLOYING 被引量:1
11
作者 LIANG Yong ZENG Xiaoyan TONG Baiyun SI Zhongyao Institute of Metal Research,Academia Sinica,Shenyang,China LIANG Yong,Professor,Institute of Metal Research.Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第11期330-334,共5页
The effect of the laser processing parameters on the composition uniformity and shape coefficient of fusion zone with laser surface alloyed Cr plated on medium carbon low alloy steel has been studied.It was found that... The effect of the laser processing parameters on the composition uniformity and shape coefficient of fusion zone with laser surface alloyed Cr plated on medium carbon low alloy steel has been studied.It was found that the composition uniformity depends on the shape coefficient of fusion zone,and the later is a function of both power density and interaction time.If the power density is fixed to a certain value,the shape coefficient is directly,propor- tional to the interaction time.A completely,uniform molten pool can be obtained,when the shape coefficient is between 1.6 and 3.0. 展开更多
关键词 laser alloying composition uniformity shape coefficient molten pool
下载PDF
Influence of positioning errors of optical shaping components for single emitter laser diode on beam shaping effects 被引量:2
12
作者 YAN Yi-xiong ZHENG Yu DUAN Ji-an 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2814-2821,共8页
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica... Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided. 展开更多
关键词 single emitter laser diode beam shaping positioning error coupling efficiency
下载PDF
Focal-shape effects on the efficiency of the tunnelionization probe for extreme laser intensities 被引量:1
13
作者 M.F.Ciappina E.E.Peganov S.V.Popruzhenko 《Matter and Radiation at Extremes》 SCIE CAS 2020年第4期53-62,共10页
We examine the effect of laser focusing on the effectiveness of a recently discussed scheme[M.F.Ciappina et al.,Phys.Rev.A 99,043405(2019)and M.F.Ciappina and S.V.Popruzhenko,Laser Phys.Lett.17,025301(2020)]for in sit... We examine the effect of laser focusing on the effectiveness of a recently discussed scheme[M.F.Ciappina et al.,Phys.Rev.A 99,043405(2019)and M.F.Ciappina and S.V.Popruzhenko,Laser Phys.Lett.17,025301(2020)]for in situ determination of ultrahigh intensities of electromagnetic radiation delivered by multi-petawatt laser facilities.Using two model intensity distributions in the focus of a laser beam,we show how the resulting yields of highly charged ions generated in the process of multiple sequential tunneling of electrons from atoms depend on the shapes of these distributions.Our findings lead to the conclusion that an accurate extraction of the peak laser intensity can be made either in the near-threshold regime,when the production of the highest charge state happens only in a small part of the laser focus close to the point where the intensity is maximal or through the determination of the points where the ion yields of close charges become equal.We show that for realistic parameters of the gas target,the number of ions generated in the central part of the focus in the threshold regime should be sufficient for a reliable measurement with highly sensitive time-of-flight detectors.Although the positions of the intersection points generally depend on the focal shape,they can be used to localize the peak intensity value in certain intervals.Finally,the slope of the intensity-dependent ion yields is shown to be robust with respect to both the focal spot size and the spatial distribution of the laser intensity in the focus.When these slopes can be measured,they will provide the most accurate determination of the peak intensity value within the considered tunnel ionization scheme.In addition to this analysis,we discuss the method in comparison with other recently proposed approaches for direct measurement of extreme laser intensities. 展开更多
关键词 laser EXTREME SHAPE
下载PDF
ANN Based Predictive Modelling of Weld Shape and Dimensions in Laser Welding of Galvanized Steel in Butt Joint Configurations 被引量:1
14
作者 Laurent Jacques Abderrazak El Ouafi 《Journal of Minerals and Materials Characterization and Engineering》 2018年第3期316-332,共17页
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es... The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions. 展开更多
关键词 laser Welding Predictive MODELING WELD Shape WELD DIMENSIONS Artificial Neural Networks 3D MODELING Finite Element Method Design of Experiments Analysis of Variance
下载PDF
Numerical simulation of thermal behavior during laser metal deposition shaping 被引量:6
15
作者 龙日升 刘伟军 +1 位作者 邢飞 王华兵 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期691-699,共9页
Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric ... Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results. 展开更多
关键词 激光金属沉积 热处理 数字模式 成型方式
下载PDF
Prediction of Weld Joint Shape and Dimensions in Laser Welding Using a 3D Modeling and Experimental Validation 被引量:1
16
作者 Laurent Jacques Abderrazak El Ouafi 《Materials Sciences and Applications》 2017年第11期757-773,共17页
This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallur... This paper presents an experimentally validated weld joint shape and dimensions predictive 3D modeling for low carbon galvanized steel in butt-joint configurations. The proposed modelling approach is based on metallurgical transformations using temperature dependent material properties and the enthalpy method. Conduction and keyhole modes welding are investigated using surface and volumetric heat sources, respectively. Transition between the heat sources is carried out according to the power density and interaction time. Simulations are carried out using 3D finite element model on commercial software. The simulation results of the weld shape and dimensions are validated using a structured experimental investigation based on Taguchi method. Experimental validation conducted on a 3 kW Nd: YAG laser source reveals that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The results show great concordance between predicted and measured values for the weld joint shape and dimensions. 展开更多
关键词 laser Welding Finite Element Method 3D MODELING Numerical Simulation WELD SHAPE WELD DIMENSIONS PREDICTIVE MODELING
下载PDF
Electrochemical behavior of YAG laser-welded NiTi shape memory alloy 被引量:4
17
作者 阎小军 杨大智 刘晓鹏 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期572-576,共5页
Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linea... Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linear and potentiodynamic polarization. The results indicate that the laser-welded NiTi alloy is less susceptible to pitting and crevice corrosion than the base metal, which is demonstrated by the increase in polarization resistance(Rp) and pitting potential(φpit) and decrease in corrosion current density(Jcorr) and mean difference between φpit and φprot values. It is confirmed by scanning electron microscope micrographs that pits could be observed on the surface of base metal but not on the surface of laser-welded alloy after potentiodynamic tests. An improvement of corrosion resistance of laser-welded NiTi alloy could be attributed to almost complete dissolution of inclusions upon laser welding. 展开更多
关键词 NITI合金 形状记忆合金 激光焊接 电化学性能 极化
下载PDF
Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser 被引量:3
18
作者 王大帅 吴戈 +1 位作者 高博 田小建 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期263-267,共5页
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro... We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons. 展开更多
关键词 passively mode-locked fiber laser parabolic-shaped pulse pair pulses interaction
下载PDF
Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
19
作者 Xiao-Yun Zhao Chun-Cheng Wang +3 位作者 Shi-Lin Hu Wei-Dong Li Jing Chen Xiao-Lei Hao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期79-83,共5页
We perform a theoretical investigation on the control over the atomic excitation of Rydberg states with shaped intense ultrashort laser pulses. By numerically solving the time-dependent Schr?dinger equation(TDSE), w... We perform a theoretical investigation on the control over the atomic excitation of Rydberg states with shaped intense ultrashort laser pulses. By numerically solving the time-dependent Schr?dinger equation(TDSE), we systematically study the dependence of the population of the Rydberg states on the π phase step position in the frequency spectra of the laser pulse for different intensities, central wavelengths and pulse durations. Our results show that the Rydberg excitation process can be effectively modulated using shaped intense laser pulses with the laser intensity as high as 1 × 1014 W/cm2. Our work also have benefit to the future investigation to find out the dominant mechanism behind the excitation of Rydberg states in strong laser fields. 展开更多
关键词 SHAPED laser PULSE RYDBERG STATES EXCITATION INTENSE field
下载PDF
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition 被引量:3
20
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部