The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on...The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.展开更多
GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the con...GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.展开更多
The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr...The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.展开更多
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto...Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser ...The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.展开更多
Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal the...Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.展开更多
The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re...The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.展开更多
Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.Th...Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.展开更多
BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation,blood supply,metabolism,and the microenvironment.Traditional phacoemulsificati...BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation,blood supply,metabolism,and the microenvironment.Traditional phacoemulsification may not fully tackle these issues,especially in instances with substantial preoperative astigmatism.The utilization of femtosecond laser-assisted phacoemulsification,in conjunction with Toric intraocular lens(IOL)implantation,offers a potentially more efficient strategy.This research seeks to evaluate the efficacy and possible complications of this approach in diabetic cataract patients.AIM To investigate the clinical efficacy and complications of femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation in diabetic cataract patients,comparing it with traditional phacoemulsification methods.METHODS This retrospective study enrolled 120 patients with diabetes cataract from May 2019 to May 2021.The patients were divided into two groups:the control group underwent traditional phacoemulsification and Toric IOL implantation,while the treatment group received Len Sx femtosecond laser-assisted treatment.Outcome measures included naked eye vision,astigmatism,high-level ocular phase difference detection,clinical efficacy,and complication.RESULTS There were no significant preoperative differences in astigmatism or naked eyesight between the two groups.However,postoperative improvements were observed in both groups,with the treatment group showing greater enhancements in naked eye vision and astigmatism six months after the procedure.High-level corneal phase difference tests also indicated significant differences in favor of the treatment group.CONCLUSION This study suggests that femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation appears to be more effective in enhancing postoperative vision in diabetic cataract patients compared to traditional methods offering valuable insights for clinical practice.展开更多
Objective:To evaluate the clinical effect of full femtosecond laser surgery in the treatment of myopia patients.Methods:120 myopia patients admitted to our hospital from January 2022 to June 2023 were selected.Accordi...Objective:To evaluate the clinical effect of full femtosecond laser surgery in the treatment of myopia patients.Methods:120 myopia patients admitted to our hospital from January 2022 to June 2023 were selected.According to the random number table method,60 patients in the observation group underwent full femtosecond laser surgery,and 60 patients in the control group underwent femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery.The clinical effects of the two groups were compared.Results:10 days postoperatively and 6 months after operation,the visual acuity level of the observation group was higher than that of the control group,the postoperative corneal asphericity coefficient and corneal full-thickness were lower than those of the control group,and the total effective rate 6 months after operation was higher than that of the control group(P<0.05).Conclusion:Full femtosecond laser surgical treatment can improve the postoperative visual acuity of patients with myopia,enhance the corneal asphericity coefficient(Q)and corneal full-thickness,and exert significant clinical effects.展开更多
AIM:To evaluate corneal astigmatic outcomes of femtosecond laser-assisted arcuate keratotomies(FAKs)combined with femtosecond-laser assisted cataract surgery(FLACS)over 12mo follow-up.METHODS:Totally 145 patients with...AIM:To evaluate corneal astigmatic outcomes of femtosecond laser-assisted arcuate keratotomies(FAKs)combined with femtosecond-laser assisted cataract surgery(FLACS)over 12mo follow-up.METHODS:Totally 145 patients with bilateral cataracts and no ocular co-morbidities were recruited to a singlecentre,single-masked,prospective randomized controlled trial(RCT)comparing two monofocal hydrophobic acrylic intraocular lenses.Eyes with corneal astigmatism(CA)of>0.8 dioptres(D)received unpaired,unopened,surface penetrating FAKs at the time of FLACS.Visual acuity,subjective refraction and Scheimpflug tomography were recorded at 1,6,and 12mo.Alpins vectoral analyses were performed.RESULTS:Fifty-one patients(61 eyes),mean age 68.2±9.6y[standard deviation(SD)],received FAKs.Sixty eyes were available for analysis,except at 12mo when 59 attended.There were no complications due to FAKs.Mean pre-operative CA was 1.13±0.20 D.There was a reduction of astigmatism at all post-operative visits(residual CA 1mo:0.85±0.42 D,P=0.0001;6mo:0.86±0.35 D,P=0001;and 12mo:0.90±0.39,P=0.0001).Alpins indices remained stable over 12mo.Overall,the cohort was under-corrected at all time points.At 12mo,61%of eyes were within±15 degrees of pre-operative astigmatic meridian.CONCLUSION:Unpaired unopened penetrating FAKs combined with on-axis phacoemulsification are safe but minimally effective.CA is largely under-corrected in this cohort using an existing unmodified nomogram.The effect of arcuate keratotomies on CA remained stable over 12mo.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable prope...Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate.Among many fabrication methods for stimulus-responsive structures,femtosecond laser direct writing(FsLDW)has received increasing attention because of its high precision,simplicity,true three-dimensional machining ability,and wide applicability to almost all materials.This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW.Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies,different stimulating factors that can trigger structural responses of prepared intelligent structures,such as magnetic field,light,temperature,pH,and humidity,are emphatically summarized.Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW,as well as the present obstacles and forthcoming development opportunities,are discussed.展开更多
A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemi...A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemical double layer.The two applied pulse durations were significantly shorter than the electron-phonon relaxation time.The laser pulse durations had negligible impact on the emitted charge,which is incompatible with multiphoton emission.On the other hand,the ob-served dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism.展开更多
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere...Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.展开更多
We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal ...We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal cumulative effects,we obtained crack-free holes of aspect ratios exceeding 30 in sodalime and 70 in fused silica.The results are discussed in terms of inner wall morphology,aspect ratio and drilling speed.展开更多
AIM:To evaluate the effect of symmetrical arc incision correcting corneal astigmatism in femtosecond laserassisted phacoemulsification(FLACS).METHODS:This study enrolled patients with cataract combined with regular co...AIM:To evaluate the effect of symmetrical arc incision correcting corneal astigmatism in femtosecond laserassisted phacoemulsification(FLACS).METHODS:This study enrolled patients with cataract combined with regular corneal astigmatism of>0.75 D,who underwent FLACS.Symmetrical arc incision was set at 8 mm diameter and 85%depth.The follow-up time was 3-24mo(4.92±3.49mo).Pentacam recorded the corneal astigmatism and higher-order aberration at pre-operation and post-operation.The changes in corneal astigmatism were analyzed by Alpins method.The correlation of astigmatism type,age,corneal horizontal diameter,corneal thickness,arc incision length,and correction index(CI)was analyzed,and the residual corneal astigmatism was compared with the residual whole eye astigmatism.RESULTS:Totally 79 patients(102 eyes)were enrolled,10 patients had corneal epithelial injury,1 patient occurred corneal epithelial hyperplasia.The corneal astigmatism was 1.23±0.38 D pre-operation,and decreased to 0.76±0.39 D post-operation(t=10.146,P=0.000).Corneal high-order aberration was 0.17±0.08μm pre-operation and 0.24±0.11μm post-operation(t=-5.186,P=0.000).The residual corneal astigmatism and residual whole eye astigmatism were no significant difference(t=-0.347,P=0.729).Using Alpin’s method,the following were determined:target-induced astigmatism(TIA)=1.23±0.38 D,surgeryinduced astigmatism(SIA)=0.77±0.45 D,difference vector(DV)=0.77±0.39 D,and CI=0.54±0.28.Age,astigmatism size,corneal horizontal diameter,corneal thickness,and arc incision length were not correlated with CI.The CI for against the rule astigmatism(ATR)was better than that for with the rule astigmatism(WTR;P=0.001).CONCLUSION:Femtosecond laser-assisted astigmatic keratotomy has better CI of ATR,but increase higher-order corneal aberration.CI is not ideal,it’s not a perfect choice if we pursue ideal correction effect.展开更多
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI...This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.展开更多
AIM:To report the safety,efficacy,and accuracy of small-incision lenticule extraction(SMILE)or femtosecondassisted laser in situ keratomileusis(FS-LASIK)for the correction of myopia or myopic astigmatism in patients w...AIM:To report the safety,efficacy,and accuracy of small-incision lenticule extraction(SMILE)or femtosecondassisted laser in situ keratomileusis(FS-LASIK)for the correction of myopia or myopic astigmatism in patients with deep corneal opacity denoted by anterior segment optical coherence tomography(AS-OCT).METHODS:Four patients with monocular corneal opacity(3 due to mechanical injury,1 due to a firecracker wound)were recruited and treated with refractive surgery(3 for SMILE,1 for FS-LASIK combined with limbal relaxing incision(LRI).Preoperative ocular manifestations,surgical details,postoperative visual outcomes,corneal opacity parameters,and corneal topography were analyzed.RESULTS:Preoperatively,spherical diopter ranged from-3.0 D to-4.75 D with cylinder ranging from-0.75 to-5.0 D,and corrected distance visual acuity(CDVA)ranging from 20/25 to 20/20.One eye’s corneal opacity was located in the central zone and three were in the mid-peripheral optical zone.Three patients underwent uneventful SMILE in both eyes,whilst one patient underwent FS-LASIK for high astigmatism in both eyes and LRI in the right eye.CDVA of the eye with corneal opacity ranged from 20/22to 20/20 one to six weeks postoperatively.Two patients achieved better CDVA and no patients lost Snellen lines.The postoperative diopter was within±0.75 D for all eyes.Significant edema existed above the corneal opacity in one eye and dissipated soon.No eccentric corneal topography or morphological anomaly of the corneal cap or flap was observed.CONCLUSION:The cases demonstrate that SMILE or FS-LASIK is safe and effective to treat myopic astigmatism combined with deep corneal opacity lesions after comprehensive preoperative evaluation and appropriate candidate selection.FS-LASIK combined with LRI is also sufficient for correcting high astigmatism due to corneal scarring.展开更多
基金supported by the National Natural Science Foundation of China(52275463,51772240)the National Key Research and Development Program of China(2021YFB3302000)the Key Research and Development Projects of Shaanxi Province,China(2018ZDXM-GY-135)。
文摘The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.
基金supported by the USTC Research Funds of the Double First-Class Initiative(Nos.YD2090002013,YD234000009)the National Natural Science Foundation of China(Nos.61927814,62325507,52122511,U20A20290,62005262)。
文摘The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.
基金supported by the National Natural Science Foundation of China(Nos.52122511,61927814,and U20A20290)Anhui Provincial Natural Science Foundation(2308085QF218)+5 种基金China National Postdoctoral Program for Innovative Talents(BX20230351)China Postdoctoral Science Foundation(2023M733382)National Key R&D Program of China(2021YFF0502700)Major Scientific and Technological Projects in Anhui Province(202203a05020014)Fundamental Research Funds for the Central Universities(WK5290000003 and WK2090000058)Youth Innovation Promotion Association CAS(Y2021118)。
文摘Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
基金carried out within the framework of Program 10 “Experimental laboratory astrophysics and geophysics,NCPM.”。
文摘The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.
基金financially supported by Shanghai Pujiang Program 23PJ1406500.
文摘Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.
基金supported by the Beijing Municipal Natural Science Foundation(JQ20015)National Key Research and Development Program of China(No.2022YFB4601300)+3 种基金the National Science Fund for Distinguished Young Scholars(No.52325505)the National Natural Science Foundation of China(NSFC)(No.52075041)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2037205)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No2021WNLOKF016)。
文摘The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move.
基金The National Natural Science Foundation of China(Grant Numbers:U21A20135 and 52205488)‘Shuguang Program’supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant Number:20SG12)Shanghai Jiao Tong University(Grant Number:2020QY11).
文摘Surface-enhanced Raman spectroscopy(SERS)microfluidic system,which enables rapid detection of chemical and biological analytes,offers an effective platform to monitor various food contaminants and disease diagnoses.The efficacy of SERS microfluidic systems is greatly dependent on the sensitivity and reusability of SERS detection substrates to ensure repeated use for prolonged periods.This study proposed a novel process of femtosecond laser nanoparticle array(NPA)implantation to achieve homogeneous forward transfer of gold NPA on a flexible polymer film and accurately integrated it within microfluidic chips for SERS detection.The implanted Au-NPA strips show a remarkable electromagnetic field enhancement with the factor of 9×108 during SERS detection of malachite green(MG)solution,achieving a detection limit lower than 10 ppt,far better than most laser-prepared SERS substrates.Furthermore,Au-NPA strips show excellent reusability after several physical and chemical cleaning,because of the robust embedment of laser-implanted NPA in flexible substrates.To demonstrate the performance of Au-NPA,a SERS microfluidic system is built to monitor the online oxidation reaction between MG/NaClO reactants,which helps infer the reaction path.The proposed method of nanoparticle implantation is more effective than the direct laser structuring technique.It provides better performance for SERS detection,robustness of detection,and substrate flexibility and has a wider range of applications for microfluidic systems without any negative impact.
文摘BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation,blood supply,metabolism,and the microenvironment.Traditional phacoemulsification may not fully tackle these issues,especially in instances with substantial preoperative astigmatism.The utilization of femtosecond laser-assisted phacoemulsification,in conjunction with Toric intraocular lens(IOL)implantation,offers a potentially more efficient strategy.This research seeks to evaluate the efficacy and possible complications of this approach in diabetic cataract patients.AIM To investigate the clinical efficacy and complications of femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation in diabetic cataract patients,comparing it with traditional phacoemulsification methods.METHODS This retrospective study enrolled 120 patients with diabetes cataract from May 2019 to May 2021.The patients were divided into two groups:the control group underwent traditional phacoemulsification and Toric IOL implantation,while the treatment group received Len Sx femtosecond laser-assisted treatment.Outcome measures included naked eye vision,astigmatism,high-level ocular phase difference detection,clinical efficacy,and complication.RESULTS There were no significant preoperative differences in astigmatism or naked eyesight between the two groups.However,postoperative improvements were observed in both groups,with the treatment group showing greater enhancements in naked eye vision and astigmatism six months after the procedure.High-level corneal phase difference tests also indicated significant differences in favor of the treatment group.CONCLUSION This study suggests that femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation appears to be more effective in enhancing postoperative vision in diabetic cataract patients compared to traditional methods offering valuable insights for clinical practice.
文摘Objective:To evaluate the clinical effect of full femtosecond laser surgery in the treatment of myopia patients.Methods:120 myopia patients admitted to our hospital from January 2022 to June 2023 were selected.According to the random number table method,60 patients in the observation group underwent full femtosecond laser surgery,and 60 patients in the control group underwent femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery.The clinical effects of the two groups were compared.Results:10 days postoperatively and 6 months after operation,the visual acuity level of the observation group was higher than that of the control group,the postoperative corneal asphericity coefficient and corneal full-thickness were lower than those of the control group,and the total effective rate 6 months after operation was higher than that of the control group(P<0.05).Conclusion:Full femtosecond laser surgical treatment can improve the postoperative visual acuity of patients with myopia,enhance the corneal asphericity coefficient(Q)and corneal full-thickness,and exert significant clinical effects.
基金Supported by independent research grant from Alcon(IIT#34114517)。
文摘AIM:To evaluate corneal astigmatic outcomes of femtosecond laser-assisted arcuate keratotomies(FAKs)combined with femtosecond-laser assisted cataract surgery(FLACS)over 12mo follow-up.METHODS:Totally 145 patients with bilateral cataracts and no ocular co-morbidities were recruited to a singlecentre,single-masked,prospective randomized controlled trial(RCT)comparing two monofocal hydrophobic acrylic intraocular lenses.Eyes with corneal astigmatism(CA)of>0.8 dioptres(D)received unpaired,unopened,surface penetrating FAKs at the time of FLACS.Visual acuity,subjective refraction and Scheimpflug tomography were recorded at 1,6,and 12mo.Alpins vectoral analyses were performed.RESULTS:Fifty-one patients(61 eyes),mean age 68.2±9.6y[standard deviation(SD)],received FAKs.Sixty eyes were available for analysis,except at 12mo when 59 attended.There were no complications due to FAKs.Mean pre-operative CA was 1.13±0.20 D.There was a reduction of astigmatism at all post-operative visits(residual CA 1mo:0.85±0.42 D,P=0.0001;6mo:0.86±0.35 D,P=0001;and 12mo:0.90±0.39,P=0.0001).Alpins indices remained stable over 12mo.Overall,the cohort was under-corrected at all time points.At 12mo,61%of eyes were within±15 degrees of pre-operative astigmatic meridian.CONCLUSION:Unpaired unopened penetrating FAKs combined with on-axis phacoemulsification are safe but minimally effective.CA is largely under-corrected in this cohort using an existing unmodified nomogram.The effect of arcuate keratotomies on CA remained stable over 12mo.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金supported by the National Natural Science Foundation of China (Nos. 52122511, 52105492, and 62005262)the National Key Research and Development Program of China (No. 2021YFF0502700)+2 种基金the Students’ Innovation and Entrepreneurship Foundation of USTC (Nos. CY2022G32 and XY2022G02CY)the USTC Research Funds of the Double First-Class Initiative (No. YD2340002009)CAS Project for Young Scientists in Basic Research (No. YSBR-049)
文摘Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate.Among many fabrication methods for stimulus-responsive structures,femtosecond laser direct writing(FsLDW)has received increasing attention because of its high precision,simplicity,true three-dimensional machining ability,and wide applicability to almost all materials.This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW.Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies,different stimulating factors that can trigger structural responses of prepared intelligent structures,such as magnetic field,light,temperature,pH,and humidity,are emphatically summarized.Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW,as well as the present obstacles and forthcoming development opportunities,are discussed.
文摘A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemical double layer.The two applied pulse durations were significantly shorter than the electron-phonon relaxation time.The laser pulse durations had negligible impact on the emitted charge,which is incompatible with multiphoton emission.On the other hand,the ob-served dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism.
基金This work is supported by Academic Research Fund Tier 2,Ministry of Education-Singapore(MOE2019-T2-2-147)T.C.acknowledges support from the National Key Research and Development Program of China(2019YFA0709100,2020YFA0714504).
文摘Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
文摘We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal cumulative effects,we obtained crack-free holes of aspect ratios exceeding 30 in sodalime and 70 in fused silica.The results are discussed in terms of inner wall morphology,aspect ratio and drilling speed.
基金Supported by the Natural Science Foundation of Guangdong Province,China(No.2022A1515010742)Hunan Provincial Natural Science Foundation of China(No.2021JJ30045)the Science Research Grant of Aier Eye Hospital Group(No.AF2102D5,No.AF2201D06,No.AF2201D05).
文摘AIM:To evaluate the effect of symmetrical arc incision correcting corneal astigmatism in femtosecond laserassisted phacoemulsification(FLACS).METHODS:This study enrolled patients with cataract combined with regular corneal astigmatism of>0.75 D,who underwent FLACS.Symmetrical arc incision was set at 8 mm diameter and 85%depth.The follow-up time was 3-24mo(4.92±3.49mo).Pentacam recorded the corneal astigmatism and higher-order aberration at pre-operation and post-operation.The changes in corneal astigmatism were analyzed by Alpins method.The correlation of astigmatism type,age,corneal horizontal diameter,corneal thickness,arc incision length,and correction index(CI)was analyzed,and the residual corneal astigmatism was compared with the residual whole eye astigmatism.RESULTS:Totally 79 patients(102 eyes)were enrolled,10 patients had corneal epithelial injury,1 patient occurred corneal epithelial hyperplasia.The corneal astigmatism was 1.23±0.38 D pre-operation,and decreased to 0.76±0.39 D post-operation(t=10.146,P=0.000).Corneal high-order aberration was 0.17±0.08μm pre-operation and 0.24±0.11μm post-operation(t=-5.186,P=0.000).The residual corneal astigmatism and residual whole eye astigmatism were no significant difference(t=-0.347,P=0.729).Using Alpin’s method,the following were determined:target-induced astigmatism(TIA)=1.23±0.38 D,surgeryinduced astigmatism(SIA)=0.77±0.45 D,difference vector(DV)=0.77±0.39 D,and CI=0.54±0.28.Age,astigmatism size,corneal horizontal diameter,corneal thickness,and arc incision length were not correlated with CI.The CI for against the rule astigmatism(ATR)was better than that for with the rule astigmatism(WTR;P=0.001).CONCLUSION:Femtosecond laser-assisted astigmatic keratotomy has better CI of ATR,but increase higher-order corneal aberration.CI is not ideal,it’s not a perfect choice if we pursue ideal correction effect.
基金We are grateful for financial supports from the Ministry of Science and Technology of China(Grant No.2021YFA1401100)National Natural Science Foundation of China(Grant Nos.12074123,11804227,91950112),and the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.
基金Supported by the Science and Technology Program of Zhejiang Province(No.2019C03046)the Natural Science Foundation of Zhejiang Province under Grant(No.LQ20H120007)。
文摘AIM:To report the safety,efficacy,and accuracy of small-incision lenticule extraction(SMILE)or femtosecondassisted laser in situ keratomileusis(FS-LASIK)for the correction of myopia or myopic astigmatism in patients with deep corneal opacity denoted by anterior segment optical coherence tomography(AS-OCT).METHODS:Four patients with monocular corneal opacity(3 due to mechanical injury,1 due to a firecracker wound)were recruited and treated with refractive surgery(3 for SMILE,1 for FS-LASIK combined with limbal relaxing incision(LRI).Preoperative ocular manifestations,surgical details,postoperative visual outcomes,corneal opacity parameters,and corneal topography were analyzed.RESULTS:Preoperatively,spherical diopter ranged from-3.0 D to-4.75 D with cylinder ranging from-0.75 to-5.0 D,and corrected distance visual acuity(CDVA)ranging from 20/25 to 20/20.One eye’s corneal opacity was located in the central zone and three were in the mid-peripheral optical zone.Three patients underwent uneventful SMILE in both eyes,whilst one patient underwent FS-LASIK for high astigmatism in both eyes and LRI in the right eye.CDVA of the eye with corneal opacity ranged from 20/22to 20/20 one to six weeks postoperatively.Two patients achieved better CDVA and no patients lost Snellen lines.The postoperative diopter was within±0.75 D for all eyes.Significant edema existed above the corneal opacity in one eye and dissipated soon.No eccentric corneal topography or morphological anomaly of the corneal cap or flap was observed.CONCLUSION:The cases demonstrate that SMILE or FS-LASIK is safe and effective to treat myopic astigmatism combined with deep corneal opacity lesions after comprehensive preoperative evaluation and appropriate candidate selection.FS-LASIK combined with LRI is also sufficient for correcting high astigmatism due to corneal scarring.