The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and...The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.展开更多
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse a...We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.展开更多
MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser dep...MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.展开更多
One dimensional electron density perturbation is derived by using the cold fluid equation, Possion's equation and the continuity equation. The perturbation is generated by a driving laser pulse propagating through...One dimensional electron density perturbation is derived by using the cold fluid equation, Possion's equation and the continuity equation. The perturbation is generated by a driving laser pulse propagating through a plasma. The upshifting of the frequency of a trailing pulse induced by density perturbation is studied by using optical metric. The results show that it is possible that the photon will gain energy from the wakefield when assuming photon's number to be conserved, i.e. , the photon will be accelerated.展开更多
Laser-driven ion accelerators have the advantages of compact size,high density,and short bunch duration over conventional accelerators.Nevertheless,it is still challenging to generate ion beams with quasi-monoenergeti...Laser-driven ion accelerators have the advantages of compact size,high density,and short bunch duration over conventional accelerators.Nevertheless,it is still challenging to generate ion beams with quasi-monoenergetic peak and low divergence in experiments with the current ultrahigh intensity laser and thin target technologies.Here we propose a scheme that a Laguerre–Gaussian laser irradiates a near-critical-density(NCD)plasma to generate a quasi-monoenergetic and low-divergence proton beam.The Laguerre–Gaussian laser pulse in an NCD plasma excites a moving longitudinal electrostatic field with a large amplitude,and it maintains the inward bowl-shape for dozens of laser durations.This special distribution of the longitudinal electrostatic field can simultaneously accelerate and converge the protons.Our particle-in-cell(PIC)simulation shows that the efficient proton acceleration can be realized with the Laguerre–Gaussian laser intensity ranging from 3.9×10^(21)W·cm^(-2)–1.6×10^(22)W·cm^(-2)available in the near future,e.g.,a quasi-monoenergetic proton beam with peak energy~115 MeV and divergence angles less than 5°can be generated by a 5.3×10^(21)W·cm^(-2)pulse.This work could provide a reference for the high-quality ion beam generation with PWclass laser systems available recently.展开更多
Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a...Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a code or some assumptions. In this paper, a diagnostic idea of using line-pairs emitted from a doubly-excited state is proposed. By using the method presented in this paper, Te and the fractional population ratio of bare nuclei and H-like ions are directly obtained from the emission intensity ratios.展开更多
Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generat...Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.展开更多
Nonlinear interaction of laser and electron–positron–ion plasmas is investigated by invoking the variational principle and numerical simulation, in terms of a nonlinear Schrodinger equation with inhomogeneities effe...Nonlinear interaction of laser and electron–positron–ion plasmas is investigated by invoking the variational principle and numerical simulation, in terms of a nonlinear Schrodinger equation with inhomogeneities effect. It is shown that the plasma inhomogeneity has great influence on the laser beam dynamics. The laser beam can be self-trapped, focused, or defocused depending on the inhomogeneity character. The linearly decreasing axial plasma density makes the laser beam defocus, while the linearly increasing axial plasma density results in self-trapping of the beam. The self-focusing of the trapped beam is found in a high-density region. For the Gaussian types of density distribution, the beam field submits nonlinearly oscillating regime. The results provide an efficient way to manipulate the dynamics of laser beam propagating in plasma.展开更多
A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density grad...A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.展开更多
We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change...We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change of the ground and excited states population as well as the temporal variation of the electron energy distribution function (EEDF), beside the formed atomic ion Na+, molecular ion ?and tri-atomic ions are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities under the experimental conditions of Tapalian and Smith (1993) to test the existence of the formed tri-atomic ions. The numerical calculations of the electron energy distribution function (EEDF) show that a deviation from the Maxwellian distribution due to the super elastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Horn- beck ionization processes for producing , the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.展开更多
The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plas...The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plasma generation by laser ionization based on resonance saturation (LIBORS). Such ionization mechanism is observed experimentally for the first time by Tapalian and Smith (1993) [1]. In their experiment, stepwise atomic excitations are created using two CW dye lasers;one laser is tuned to 589 nm to excite the Na(3s) to Na(3p) D2 transition of sodium and the other laser is tuned 569 nm to excite the Na(3p) to Na(4d) transition. The analysis is grounded on a numerical study of the role of seed electron processes on the temporal evolution of sodium plasma formation by laser irradiation. A previously developed numerical model based on LIBORS technique is modified and adopted. In the present study, the sodium atom is treated as an atom comprises 22 levels namely: a ground state, 18 excited states and three ionic states (atomic, molecular and tri-atomic). The model tackled various collisional and radiative processes that act to enhance and deplete the free electrons generated in the interaction region. The contribution of these processes is signified by solving numerically a system of time-dependent rate equations, which couple the generated atomic and ionic species with the laser fields. Meanwhile, it solves the time-dependent Boltzmann equation for the electron energy distribution function (EEDF) of the generated electrons. The computed values of the EEDF, time evolution of both excited states population and the formed ionic species considering the individual effect of associative ionization, Penning, and photo-ionization and triatomic associative ionization justified the important effect of each of these ionizing processes in creating the early stage electrons. These seed electrons are assumed to rapidly gain energy through superelastic collisions leading eventually to plasma development.展开更多
Effect of electron-ion collision on stimulated Raman backward scattering (SRBS) spectrum are investigated by numerical simulations. In the given parameters and plasma condition, the growth rates of SRBS are found to...Effect of electron-ion collision on stimulated Raman backward scattering (SRBS) spectrum are investigated by numerical simulations. In the given parameters and plasma condition, the growth rates of SRBS are found to strongly depend on the electron density, and the gap in the SRBS spectrum corresponding to the high electron density could be explained by the collisional damping. In the low density region, a much higher Landau damping estimated by the linear theory makes the collisional damping negligible. However, the present results show that, collisions play a even more important role than known in the linear theory.展开更多
We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at Fre...We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.展开更多
Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed t...Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.展开更多
Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the lase...Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
A scheme of generating energetic ions by the interaction of an ultrahigh-intensity laser pulse and a thin solid foil is studied. The combination of the effects of radiation pressure and Coulomb explosion makes the ion...A scheme of generating energetic ions by the interaction of an ultrahigh-intensity laser pulse and a thin solid foil is studied. The combination of the effects of radiation pressure and Coulomb explosion makes the ion acceleration more effective. The maximum ion velocity variation with time is predicted theoretically while the temporal evolution of the electrostatic field due to the Coulomb explosion is taken into consideration. Two-dimensional particle-in-cell simulations are done to verify the theory.展开更多
We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus...We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus shape can control the distribution of a transversal wakefield. When the laser focus shape is changed from circular to slanted elliptical in the experiment, the electron beam profiles change from an ellipse to three typical shapes. The three-dimensional particlein-cell simulation result agrees well with the experiment, and it shows that the trajectories of these accelerated electrons change from undulating to helical. Such an all-optical method could be useful for convenient control of the transverse motion of an electron beam, which results in synchrotron radiation from orbit angular momentum.展开更多
基金supported by NNSA cooperative agreement DE-NA0002008the Defense Advanced Research Projects Agency's PULSE program(12-63-PULSE-FP014)the Air Force Office of Scientific Research(FA9550-14-1-0045).
文摘The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
基金the National Natural Science Foundation of China(Grant Nos.11865014,11765017,11764039,11475027,11274255,and 11305132)the Natural Science Foundation of Gansu Province of China(Grant No.17JR5RA076)+2 种基金the Scientific Research Project of Gansu Higher Education of China(Grant No.2016A-005)the Natural Science Foundation of Education Department of Guizhou Province of China(Grant No.Qianjiaohe-KY-[2017]301)the Science and Technology Project of Guizhou Province of China(Grant No.Qiankehe-LH-[2017]7008).
文摘We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.
基金supported by OP RDE,MEYS,Czech Republic under the project CANAM OP(No.CZ.02.1.01/0.0/0.0/16_013/0001812)by the Czech Science Foundation GACR(No.23-06702S)。
文摘MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.
文摘One dimensional electron density perturbation is derived by using the cold fluid equation, Possion's equation and the continuity equation. The perturbation is generated by a driving laser pulse propagating through a plasma. The upshifting of the frequency of a trailing pulse induced by density perturbation is studied by using optical metric. The results show that it is possible that the photon will gain energy from the wakefield when assuming photon's number to be conserved, i.e. , the photon will be accelerated.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050300)the National Natural Science Foundation of China(Grant No.12205366)+2 种基金the National Key Research and Development Program of China(Grant No.2018YFA0404801)the Fundamental Research Funds for the Central Universities(Grant No.2020MS138)the Research Funds of Renmin University of China(Grant No.20XNLG01)。
文摘Laser-driven ion accelerators have the advantages of compact size,high density,and short bunch duration over conventional accelerators.Nevertheless,it is still challenging to generate ion beams with quasi-monoenergetic peak and low divergence in experiments with the current ultrahigh intensity laser and thin target technologies.Here we propose a scheme that a Laguerre–Gaussian laser irradiates a near-critical-density(NCD)plasma to generate a quasi-monoenergetic and low-divergence proton beam.The Laguerre–Gaussian laser pulse in an NCD plasma excites a moving longitudinal electrostatic field with a large amplitude,and it maintains the inward bowl-shape for dozens of laser durations.This special distribution of the longitudinal electrostatic field can simultaneously accelerate and converge the protons.Our particle-in-cell(PIC)simulation shows that the efficient proton acceleration can be realized with the Laguerre–Gaussian laser intensity ranging from 3.9×10^(21)W·cm^(-2)–1.6×10^(22)W·cm^(-2)available in the near future,e.g.,a quasi-monoenergetic proton beam with peak energy~115 MeV and divergence angles less than 5°can be generated by a 5.3×10^(21)W·cm^(-2)pulse.This work could provide a reference for the high-quality ion beam generation with PWclass laser systems available recently.
文摘Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a code or some assumptions. In this paper, a diagnostic idea of using line-pairs emitted from a doubly-excited state is proposed. By using the method presented in this paper, Te and the fractional population ratio of bare nuclei and H-like ions are directly obtained from the emission intensity ratios.
文摘Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274255 and 11305132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20136203110001)+1 种基金the Natural Science Foundation of Gansu Province,China(Grant No.2011GS04358)the Creation of Science and Technology of Northwest Normal University,China(Grant Nos.NWNU-KJCXGC-03-48 and NWNU-LKQN-12-12)
文摘Nonlinear interaction of laser and electron–positron–ion plasmas is investigated by invoking the variational principle and numerical simulation, in terms of a nonlinear Schrodinger equation with inhomogeneities effect. It is shown that the plasma inhomogeneity has great influence on the laser beam dynamics. The laser beam can be self-trapped, focused, or defocused depending on the inhomogeneity character. The linearly decreasing axial plasma density makes the laser beam defocus, while the linearly increasing axial plasma density results in self-trapping of the beam. The self-focusing of the trapped beam is found in a high-density region. For the Gaussian types of density distribution, the beam field submits nonlinearly oscillating regime. The results provide an efficient way to manipulate the dynamics of laser beam propagating in plasma.
基金supported by the National Natural Science Foundation of China (Grant No. 10734080)the National Basic Research Program of China (Grant No. 2006CB806000)+1 种基金the Chinese Academy of Sciences,the Shanghai Commission of Science and Technology (Grant Nos. 06DZ22015 and 0652nm005)the Hunan Provincial Natural Science Foundation of China (GrantNo. 09JJ3012)
文摘A general solution of the electrostatic potential that determines the maximum light-ion energy is derived for the test-particle acceleration model by taking into account the influence of the substrate-ion density gradient. It is shown that the substrate-ion density structure is also dependent on laser pulse duration. In the picosecond or sub-picosecond regime, the decreasing density gradient of the substrate-ions leads to an evident reduction in the acceleration efficiency of the light-ions. However, this kind of influence is negligible in the ultrashort regime.
文摘We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change of the ground and excited states population as well as the temporal variation of the electron energy distribution function (EEDF), beside the formed atomic ion Na+, molecular ion ?and tri-atomic ions are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities under the experimental conditions of Tapalian and Smith (1993) to test the existence of the formed tri-atomic ions. The numerical calculations of the electron energy distribution function (EEDF) show that a deviation from the Maxwellian distribution due to the super elastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Horn- beck ionization processes for producing , the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.
文摘The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plasma generation by laser ionization based on resonance saturation (LIBORS). Such ionization mechanism is observed experimentally for the first time by Tapalian and Smith (1993) [1]. In their experiment, stepwise atomic excitations are created using two CW dye lasers;one laser is tuned to 589 nm to excite the Na(3s) to Na(3p) D2 transition of sodium and the other laser is tuned 569 nm to excite the Na(3p) to Na(4d) transition. The analysis is grounded on a numerical study of the role of seed electron processes on the temporal evolution of sodium plasma formation by laser irradiation. A previously developed numerical model based on LIBORS technique is modified and adopted. In the present study, the sodium atom is treated as an atom comprises 22 levels namely: a ground state, 18 excited states and three ionic states (atomic, molecular and tri-atomic). The model tackled various collisional and radiative processes that act to enhance and deplete the free electrons generated in the interaction region. The contribution of these processes is signified by solving numerically a system of time-dependent rate equations, which couple the generated atomic and ionic species with the laser fields. Meanwhile, it solves the time-dependent Boltzmann equation for the electron energy distribution function (EEDF) of the generated electrons. The computed values of the EEDF, time evolution of both excited states population and the formed ionic species considering the individual effect of associative ionization, Penning, and photo-ionization and triatomic associative ionization justified the important effect of each of these ionizing processes in creating the early stage electrons. These seed electrons are assumed to rapidly gain energy through superelastic collisions leading eventually to plasma development.
基金supported by National Natural Science Foundation of China (Nos. 10975023, 10935003)the Sci. & Tech. Funds of CAEP (No. 2010A0102004)the State Key Development Program for Basic Research Program of China(No. 2007CB814802)
文摘Effect of electron-ion collision on stimulated Raman backward scattering (SRBS) spectrum are investigated by numerical simulations. In the given parameters and plasma condition, the growth rates of SRBS are found to strongly depend on the electron density, and the gap in the SRBS spectrum corresponding to the high electron density could be explained by the collisional damping. In the low density region, a much higher Landau damping estimated by the linear theory makes the collisional damping negligible. However, the present results show that, collisions play a even more important role than known in the linear theory.
基金supported by the National Natural Science Foundation of China(Nos.10834008,10974214,60921004,and 51175324)the National"973"Program of China(Nos.2011CB808104,2011CB808100,and 2010CB923203)supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(No.2010T2G02)
文摘We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.
基金supported by National Natural Science Foundation of China (Grant No. 11602016)
文摘Plasma in the discharge channel of a pulsed plasma thruster(PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail.The computational results of the electron number density, which is in the order of 1023 m-3,show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.
基金supported by Project Code IBS-R012-D1supported by the National Natural Science Foundation of China (Project No. 51175324)
文摘Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
基金Project supported by National Natural Science Foundation of China (Grant Nos 10675155 and 10834008)the 973 Program (GrantNo 2006CB806004)Japan-Korea-China Cooperative Project on High Energy Density Sciences for Laser Fusion Energy
文摘A scheme of generating energetic ions by the interaction of an ultrahigh-intensity laser pulse and a thin solid foil is studied. The combination of the effects of radiation pressure and Coulomb explosion makes the ion acceleration more effective. The maximum ion velocity variation with time is predicted theoretically while the temporal evolution of the electrostatic field due to the Coulomb explosion is taken into consideration. Two-dimensional particle-in-cell simulations are done to verify the theory.
基金supported by the Science Challenge Project(No.TZ2018005)the National Key R&D Program of China(No.2017YFA0403301)+2 种基金the National Natural Science Foundation of China(Nos.11991073,11721404,11805266,11905289,and 61975229)the Chinese Postdoctoral Science Foundation(No.Y9BK014L51)the Key Program of CAS(No.XDB17030500)。
文摘We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus shape can control the distribution of a transversal wakefield. When the laser focus shape is changed from circular to slanted elliptical in the experiment, the electron beam profiles change from an ellipse to three typical shapes. The three-dimensional particlein-cell simulation result agrees well with the experiment, and it shows that the trajectories of these accelerated electrons change from undulating to helical. Such an all-optical method could be useful for convenient control of the transverse motion of an electron beam, which results in synchrotron radiation from orbit angular momentum.