A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution...A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.展开更多
The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat ...The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat flow model of hybrid welding is presented. As todeep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. Theheat source of heat conductive welding is composed of two Gaussian distribute surface heat sources.With this heat source model, a temperature field is calculated. The finite element code MARC isemployed for this purpose. The calculation results show a good agreement with the experimental data.展开更多
An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO_2 laser-TIG coaxial hybrid, CO_2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial...An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO_2 laser-TIG coaxial hybrid, CO_2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial hybrid. The experimental results indicate that hybrid welding has two welding mechanisms in CO_2 laser-TIG hybrid welding: deep penetration welding and heat conduction welding. As the effect of the laser-induced keyhole, the arc root is condensed, the current density and penetration depth increase significantly, the welding characteristic is apt to deep penetration welding. When current increases to some degree, the keyhole induced by laser disappears, which produces a shallow penetration and wide bead. The weld exhibits heat conduction welding characteristics. Furthermore, the arc images and weld bead cross-sections of three kinds of hybrid manners were also compared and analyzed at different welding currents, which established the foundation for understanding the welding characteristics of laser-TIG hybrid welding comprehensively.展开更多
In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be ac...In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.展开更多
The weldability of in situ TiB2 reinforced ZL101 metal matrix composites ( MMCs) was examined using laser-TIG hybrid welding technology. High speed camera was employed to observe the coupled results between laser pl...The weldability of in situ TiB2 reinforced ZL101 metal matrix composites ( MMCs) was examined using laser-TIG hybrid welding technology. High speed camera was employed to observe the coupled results between laser plume and electric arc. Optical microscope (OM) , scanning electron microscope (SEM) , tensile machine and wearing equipment were used to evaluate the quality of welding joint. The effective hybrid welding was realized and defect-free seam was obtained when the laser power (8 kW), TIG current ( 100 A) and welding speed (3 nv/min ) were combined. TiB2 distribution became much more homogeneous than the pre-welded, and microstructure of seam was .finer obviously. Tensile and wear resistance test showed that the weld seam presented higher strength and better wear-reslstance properties than the base metal. The results indicated that TiB2 reinforced aluminum matrix composites were successfully welded using the laser-T1G hybrid welding method.展开更多
The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid...The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross sections objectively, and the simulation results are well agreed with the experimental results.展开更多
The laser-TIG hybrid welding was mainly used to weld the wrought magnesium alloy AZ31B. The technical characteristics of laser-TIG hybrid welding process was investigated and the interactional mechanism between laser ...The laser-TIG hybrid welding was mainly used to weld the wrought magnesium alloy AZ31B. The technical characteristics of laser-TIG hybrid welding process was investigated and the interactional mechanism between laser and arc was discussed, at the same time the microstructure and mechanical properties of the wrought magnesium alloy AZ31B using laser-TIG hybrid welding were analyzed by optical microscope, EPMA, SEM, tensile machine, hardness machine. The experimental results show that the presence of laser beam boosts up the stability of the arc during high speed welding and augments the penetration of weld; the crystal grains of magnesium alloy weld are fine without porosity and cracks in the best welding criterion and the microstructure of HAZ does not become coarse obviously. The elements profile analysis reveals that Mg content in the weld is lower than that of the base metal, but Al content is higher slightly. Under this experimental condition, the wrought magnesium alloy AZ31B joint can be achieved using laser-TIG hybrid process and the tensile strength of the joint is equivalent to that of the base metal.展开更多
The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of th...The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of thehybrid heat source to workpiece and its effect to weld shape were also analyzed. Through analyzing the enhancementeffect of the hybrid heat source, the absorption effect and defocusing effect of the hybrid arc to laser were calculated,and the regularity of the energy density to the current was obtained subsequently. At last, the critical energy matchesto induce the enhancement effect of CO2 laser-TIG arc hybrid welding were obtained.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
基金supported by the National Natural Science Funds of China(No.52175290 and No.51975090).
文摘A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.
文摘The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat flow model of hybrid welding is presented. As todeep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. Theheat source of heat conductive welding is composed of two Gaussian distribute surface heat sources.With this heat source model, a temperature field is calculated. The finite element code MARC isemployed for this purpose. The calculation results show a good agreement with the experimental data.
文摘An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO_2 laser-TIG coaxial hybrid, CO_2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial hybrid. The experimental results indicate that hybrid welding has two welding mechanisms in CO_2 laser-TIG hybrid welding: deep penetration welding and heat conduction welding. As the effect of the laser-induced keyhole, the arc root is condensed, the current density and penetration depth increase significantly, the welding characteristic is apt to deep penetration welding. When current increases to some degree, the keyhole induced by laser disappears, which produces a shallow penetration and wide bead. The weld exhibits heat conduction welding characteristics. Furthermore, the arc images and weld bead cross-sections of three kinds of hybrid manners were also compared and analyzed at different welding currents, which established the foundation for understanding the welding characteristics of laser-TIG hybrid welding comprehensively.
文摘In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.
文摘The weldability of in situ TiB2 reinforced ZL101 metal matrix composites ( MMCs) was examined using laser-TIG hybrid welding technology. High speed camera was employed to observe the coupled results between laser plume and electric arc. Optical microscope (OM) , scanning electron microscope (SEM) , tensile machine and wearing equipment were used to evaluate the quality of welding joint. The effective hybrid welding was realized and defect-free seam was obtained when the laser power (8 kW), TIG current ( 100 A) and welding speed (3 nv/min ) were combined. TiB2 distribution became much more homogeneous than the pre-welded, and microstructure of seam was .finer obviously. Tensile and wear resistance test showed that the weld seam presented higher strength and better wear-reslstance properties than the base metal. The results indicated that TiB2 reinforced aluminum matrix composites were successfully welded using the laser-T1G hybrid welding method.
文摘The three dimensional transient temperature distribution of laser TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross sections objectively, and the simulation results are well agreed with the experimental results.
文摘The laser-TIG hybrid welding was mainly used to weld the wrought magnesium alloy AZ31B. The technical characteristics of laser-TIG hybrid welding process was investigated and the interactional mechanism between laser and arc was discussed, at the same time the microstructure and mechanical properties of the wrought magnesium alloy AZ31B using laser-TIG hybrid welding were analyzed by optical microscope, EPMA, SEM, tensile machine, hardness machine. The experimental results show that the presence of laser beam boosts up the stability of the arc during high speed welding and augments the penetration of weld; the crystal grains of magnesium alloy weld are fine without porosity and cracks in the best welding criterion and the microstructure of HAZ does not become coarse obviously. The elements profile analysis reveals that Mg content in the weld is lower than that of the base metal, but Al content is higher slightly. Under this experimental condition, the wrought magnesium alloy AZ31B joint can be achieved using laser-TIG hybrid process and the tensile strength of the joint is equivalent to that of the base metal.
文摘The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of thehybrid heat source to workpiece and its effect to weld shape were also analyzed. Through analyzing the enhancementeffect of the hybrid heat source, the absorption effect and defocusing effect of the hybrid arc to laser were calculated,and the regularity of the energy density to the current was obtained subsequently. At last, the critical energy matchesto induce the enhancement effect of CO2 laser-TIG arc hybrid welding were obtained.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.