Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv...Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.展开更多
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase...Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.展开更多
This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering the...This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.展开更多
To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li me...To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinite...A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.展开更多
In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has f...In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has firstly developed pipeline laser-arc hybrid welding system in China, and executed the welding tests based on X70/X80 steel. Preliminary experiment results showed that hybrid welding could meet the requirements of related standards such as API1104,ASME,etc., the mechanical properties of girth seam are qualified in the case that there were no internal defects. With the development of high-power fiber laser and the continuous improvement of welding equipment, laser-arc hybrid welding technology for pipeline field welding will be available soon.展开更多
The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) an...The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process.The laser used in this experiment is an amplified Ti:sapphire femtosecond (10-15 s) laser system that generates 100 femtosecond pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm.It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved compared with those derived via laser machining without vibration assistance.展开更多
Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is ...Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is considered to be an efficient way to significantly enhance the photocatalytic activity by several times,completely inhibit photocorrosion of inorganic photocatalysts and expand the spectral response range of photocatalysts.This review provides a comprehensive overview of the surface hybridization definition,the principle of enhancing photocatalytic performance and the control factors of surface hybridization to promote photoactivity.Summarize the preparation and structural identification method of the surface hybrid photocatalyst.Special emphasis is placed on the various photocatalytic system construction of surface hybridization.The development of surface hybrid photocatalysts for pollutant degradation and energy conversion are further presented.Finally,the challenges and future development prospects of surface hybridization in photocatalysis are discussed.We hope this critical review can provide a clear picture of the state-of-the-art achievements and facilitate the applications of surface hybrid photocatalysts in environmental remediation and energy conversion.展开更多
Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research top...Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.展开更多
Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl ...Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.展开更多
Laser-arc hybrid welding has the characteristics of optimal surface formation and greater penetration;it is extensively used in the welding of plates of medium thickness.However, for hybrid welding of lasers, the weld...Laser-arc hybrid welding has the characteristics of optimal surface formation and greater penetration;it is extensively used in the welding of plates of medium thickness.However, for hybrid welding of lasers, the welding seam cooling rate is rapid;thus, the welding seam has a higher tendency to significantly harden, which has a negative impact on the weld quality of the high-strength low-alloy(HSLA) steel plates of medium thickness.In this study, laser-arc hybrid welding is performed on the BG890 QL HSLA steel produced by Baoshan Iron & Steel Co.,Ltd.,and the quenching tendency of the welded structure is examined.The results demonstrate that the specific growth direction of the columnar crystal structure of the laser-arc hybrid welded joint is obvious.However, at the center and top of the welded seam, there are equiaxed crystals.The impact properties at room temperature and-40 ℃ of the weld area are 58.0 J and 40.0 J,respectively, and those of the heat-affected zone(HAZ) are 147.0 J and 66.5 J,respectively.The impact performance can meet these requirements.Laser-arc hybrid welding of HSLA steel can yield strong and durable welds and the HAZ structure to meet the requirements of engineering applications.展开更多
Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness cha...Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.展开更多
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be...Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.展开更多
The non-Newtonian fluid model reflects the behavior of the fluid flow in global manufacturing progress and increases product performance.Therefore,the present work strives to analyze the unsteady Maxwell hybrid nanofl...The non-Newtonian fluid model reflects the behavior of the fluid flow in global manufacturing progress and increases product performance.Therefore,the present work strives to analyze the unsteady Maxwell hybrid nanofluid toward a stretching/shrinking surface with thermal radiation effect and heat transfer.The partial derivatives of the multivariable differential equations are transformed into ordinary differential equations in a specified form by applying appropriate transformations.The resulting mathematical model is clarified by utilizing the bvp4c technique.Different control parameters are investigated to see how they affect the outcomes.The results reveal that the skin friction coefficient increases by adding nanoparticles and suction parameters.The inclusion of the Maxwell parameter and thermal radiation effect both show a declining tendency in the local Nusselt number,and as a result,the thermal flow efficacy is reduced.The reduction of the unsteadiness characteristic,on the other hand,considerably promotes the improvement of heat transfer performance.The existence of more than one solution is proven,and this invariably leads to an analysis of solution stability,which validates the first solution viability.展开更多
Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin sca...Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin scattering(SBS)from bulk acoustic wave in standard optical fiber,SAW and HAW BS,due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively,facilitate innovative detection in optical microfibers sensing.The highest temperature and strain sensitivities of the hybrid acoustic modes(HAMs)are 1.082 MHz/℃and 0.0289 MHz/με,respectively,which is suitable for microfiber sensing applica-tion of high temperature and strain resolutions.Meanwhile,the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes,ranging from 0.05 MHz/℃/μm to 0.25 MHz/℃/μm and 1×10^(-4) MHz/με/μm to 5×10^(-4) MHz/με/μm,respectively.It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers.Besides,the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS,with temperature and strain errors as low as 0.30℃-0.34℃and 14.47με-16.25με.展开更多
Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric an...Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.展开更多
Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear...Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405).
文摘Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405)。
文摘Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.
文摘This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.
基金Financial support from the National Natural Science Foundation of China (22075320)。
文摘To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.
文摘In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has firstly developed pipeline laser-arc hybrid welding system in China, and executed the welding tests based on X70/X80 steel. Preliminary experiment results showed that hybrid welding could meet the requirements of related standards such as API1104,ASME,etc., the mechanical properties of girth seam are qualified in the case that there were no internal defects. With the development of high-power fiber laser and the continuous improvement of welding equipment, laser-arc hybrid welding technology for pipeline field welding will be available soon.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea Funded by the Ministry of Education,Science and Technology
文摘The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process.The laser used in this experiment is an amplified Ti:sapphire femtosecond (10-15 s) laser system that generates 100 femtosecond pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm.It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved compared with those derived via laser machining without vibration assistance.
基金This study was partly supported by the National Natural Science Foundation of China(No.21872077,21673126,21761142017,21621003)Collaborative Innovation Centre for Regional Environmental Quality。
文摘Surface hybrid inorganic semiconductors photocatalysts withπconjugated structure have recently been widely used in the field of photocatalytic environmental remediation and energy conversion.Surface hybridization is considered to be an efficient way to significantly enhance the photocatalytic activity by several times,completely inhibit photocorrosion of inorganic photocatalysts and expand the spectral response range of photocatalysts.This review provides a comprehensive overview of the surface hybridization definition,the principle of enhancing photocatalytic performance and the control factors of surface hybridization to promote photoactivity.Summarize the preparation and structural identification method of the surface hybrid photocatalyst.Special emphasis is placed on the various photocatalytic system construction of surface hybridization.The development of surface hybrid photocatalysts for pollutant degradation and energy conversion are further presented.Finally,the challenges and future development prospects of surface hybridization in photocatalysis are discussed.We hope this critical review can provide a clear picture of the state-of-the-art achievements and facilitate the applications of surface hybrid photocatalysts in environmental remediation and energy conversion.
基金supported by the National Natural Science Foundation of China(71702072 71811540414+2 种基金 71573115)the Natural Science Foundation for Jiangsu Institutions(BK20170810)the Ministry of Education of Humanities and Social Science Planning Fund(18YJA630008)
文摘Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.
基金supported by the National Natural Science Foundation of China(No.21673285 and No.21973022)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012117)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(No.GDUPS2019)。
文摘Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.
文摘Laser-arc hybrid welding has the characteristics of optimal surface formation and greater penetration;it is extensively used in the welding of plates of medium thickness.However, for hybrid welding of lasers, the welding seam cooling rate is rapid;thus, the welding seam has a higher tendency to significantly harden, which has a negative impact on the weld quality of the high-strength low-alloy(HSLA) steel plates of medium thickness.In this study, laser-arc hybrid welding is performed on the BG890 QL HSLA steel produced by Baoshan Iron & Steel Co.,Ltd.,and the quenching tendency of the welded structure is examined.The results demonstrate that the specific growth direction of the columnar crystal structure of the laser-arc hybrid welded joint is obvious.However, at the center and top of the welded seam, there are equiaxed crystals.The impact properties at room temperature and-40 ℃ of the weld area are 58.0 J and 40.0 J,respectively, and those of the heat-affected zone(HAZ) are 147.0 J and 66.5 J,respectively.The impact performance can meet these requirements.Laser-arc hybrid welding of HSLA steel can yield strong and durable welds and the HAZ structure to meet the requirements of engineering applications.
文摘Aluminium metal matrix composites are finding increased applications in many areas. Adding of the third element to the metal matrix make the composite hybrid. This paper presents the study on the surface roughness characteristics of a hybrid aluminium metal matrix (Al6061-SiC-Al2O3) composites. The experimental studies were carried out on a lathe. The composites were prepared using the liquid metallurgy technique, in which 3, 6 and 9 wt % of particulates SiC and Al2O3 were dispersed in the base matrix. The obtained cast composites were carefully machined. The characteristics that influence the surface roughness such as feed rate, depth of cut and cutting speed were studied, which made the analysis come to a conclusion that the surface roughness is increases with the increase of feed rate and it reduces the surface roughness with the increase of cutting speed.
基金funding this work through research groups(Grant No.RGP.1/260/42)。
文摘Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.
基金the Research Grant of University Kebangsaan Malaysia(No.GUP-2019-034)。
文摘The non-Newtonian fluid model reflects the behavior of the fluid flow in global manufacturing progress and increases product performance.Therefore,the present work strives to analyze the unsteady Maxwell hybrid nanofluid toward a stretching/shrinking surface with thermal radiation effect and heat transfer.The partial derivatives of the multivariable differential equations are transformed into ordinary differential equations in a specified form by applying appropriate transformations.The resulting mathematical model is clarified by utilizing the bvp4c technique.Different control parameters are investigated to see how they affect the outcomes.The results reveal that the skin friction coefficient increases by adding nanoparticles and suction parameters.The inclusion of the Maxwell parameter and thermal radiation effect both show a declining tendency in the local Nusselt number,and as a result,the thermal flow efficacy is reduced.The reduction of the unsteadiness characteristic,on the other hand,considerably promotes the improvement of heat transfer performance.The existence of more than one solution is proven,and this invariably leads to an analysis of solution stability,which validates the first solution viability.
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant Nos.61705157 and 61805167)the National Natural Science Foundation of China(Grant Nos.61975142 and 11574228)+2 种基金China Postdoctoral Science Foundation(Grant No.2020M682113)the Key Research and Development Projects of Shanxi Province,China(Grant No.201903D121124)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-112).
文摘Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin scattering(SBS)from bulk acoustic wave in standard optical fiber,SAW and HAW BS,due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively,facilitate innovative detection in optical microfibers sensing.The highest temperature and strain sensitivities of the hybrid acoustic modes(HAMs)are 1.082 MHz/℃and 0.0289 MHz/με,respectively,which is suitable for microfiber sensing applica-tion of high temperature and strain resolutions.Meanwhile,the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes,ranging from 0.05 MHz/℃/μm to 0.25 MHz/℃/μm and 1×10^(-4) MHz/με/μm to 5×10^(-4) MHz/με/μm,respectively.It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers.Besides,the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS,with temperature and strain errors as low as 0.30℃-0.34℃and 14.47με-16.25με.
基金Funded by the National Natural Science Foundation of China (Nos.51808188, 52178202, 52108206)the Fundamental Research Funds for the Central Universities (No.B210201041)。
文摘Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.
文摘Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.