The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods ...The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle in...Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle induced areas.It is a scenario of strong coupled thermomechanical process involving discontinuity behaviours of rocks.In this context,a numerical model was proposed to investigate the thermal cracking of rocks,in a framework of the continuous-discontinuous element method(CDEM)for efficiently capturing the initiation and propagation of multiple cracks.A simplex integration strategy was adopted to account for the influences of temperature-dependent material properties.Several benchmark tests were considered and the obtained results were compared with analytical solutions and numerical results from the literature.The results show that the fracture degree of the cases when considering temperature-dependent material parameters had 10%differences approximately compared with the cases with constant parameters.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is t...Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is the evolution of rock failure with diferent master crack types as investigated using Brazilian splitting tests(BSTs),direct shear tests(DSTs),and uniaxial compression tests(UCTs).The AE parameters and typical modes of each fracture type were obtained,and the energy release characteristics of each fracture mechanism were discussed.From the observed changes in the AE parameters,the rock fracture process exhibits characteristics of staged intensifcation.The scale and energy level of crack activity in the BSTs were signifcantly lower than those in the DSTs and UCTs.The proportion of tensile cracks in the BSTs was 65%–75%,while the proportions of shear cracks in the DSTs and UCTs were 75%–85%and 70%–75%,respectively.During the rock loading process under diferent conditions,failure was accompanied by an increased number of shear cracks.The amplitude,duration,and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather than tensile ones,and most of the medium-and high-energy signals had medium to low frequencies.After calculating the proposed energy amplitude ratio,the energy release of shear cracks was found to exceed that of tensile cracks at the same fracture scale.展开更多
In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compa...In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.展开更多
A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction f...A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.展开更多
The mechanical characteristics and failure behavior of rocks containing flaws or discontinuities have received wide attention in the field of rock mechanics.When external loads are applied to rock materials,stress-ind...The mechanical characteristics and failure behavior of rocks containing flaws or discontinuities have received wide attention in the field of rock mechanics.When external loads are applied to rock materials,stress-induced cracks would initiate and propagate from the flaws,ultimately leading to the irreversible failure of rocks.To investigate the cracking behavior and the effect of flaw geometries on the mechanical properties of rock materials,a series of samples containing one,two and multiple flaws have been widely investigated in the laboratory.In this paper,the experimental results for pre-cracked rocks under quasistatic compression were systematically reviewed.The progressive failure process of intact rocks is briefly described to reveal the background for experiments on samples with flaws.Then,the nondestructive measurement techniques utilized in experiments,such as acoustic emission(AE),X-ray computed tomography(CT),and digital image correlation(DIC),are summarized.The mechanical characteristics of rocks with different flaw geometries and under different loading conditions,including the geometry of pre-existing flaws,flaw filling condition and confining pressure,are discussed.Furthermore,the cracking process is evaluated from the perspective of crack initiation,coalescence,and failure patterns.展开更多
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ...Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.展开更多
The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-...The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-poten-tial during rock cracking was carried out in a magnetic field-free space. The results revealing in detail the whole process of the occurrences of electric and magnetic anomalies are significant for understanding the microscopic mechanism of ULF electric and magnetic signals. The experiment indicated that at the initial stage the slow changes in strain, self-potential and magnetic field with small amounts appeared firstly near the source of initial cracking, and then extended as the crack developed on. In the time domain, the self-potential anomaly emerged first and ULF magnetic field changes arose then. The shape of the ULF electric and magnetic anomaly varied ob-viously in early-, mid- and late-term of the test. The authors attributed the pulse-like changes of self-potential to the generation and movement of the accumulated electric charges during the cracking caused by charge separation on the crack tips within the sample. While the magnetic pulses of shorter-period at the last stage of the test, may be induced by instantaneous electric current of the accumulated charge during the cracking acceleration. The technical method and the observational results of this experiment are given in detail and the microscopic mechanism of elec-tric and magnetic precursors before earthquake are discussed in the present paper as well.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Earthquakes have significant impact on rock slopes,thus studying the seismic stability of double-slider rock slopes containing tension cracks is crucial.We proposed an analysis method on the seismic dynamic slope stab...Earthquakes have significant impact on rock slopes,thus studying the seismic stability of double-slider rock slopes containing tension cracks is crucial.We proposed an analysis method on the seismic dynamic slope stability.This method utilizes discrete Fourier transform to decompose real earthquake waves into a combination of harmonic waves.These waves are then used in conjunction with the pseudo-dynamic method and safety factor calculation formula to compute the safety factor.This approach accurately captures the influence of seismic time history characteristics on the dynamic stability of double-slider rock slopes containing tension cracks.The minimum safety factor in the obtained time history curves of the safety factor reflects the most unfavorable state of the slopes under seismic effects.Quantitative analysis is conducted using six sets of actual earthquake ground motion data obtained from the Pacific Earthquake Engineering Research Center’s NGAWest2 ground-shaking record database.The conclusions are as follows:(1)There is an inverse correlation between the average seismic acceleration amplitude and the minimum safety factor.Conversely,the seismic acceleration amplitude standard deviation shows a positive correlation with the minimum safety factor.The global sensitivity of geometric parameters in the slope model is higher than other influencing factors.(2)The proposed dynamic stability analysis method can capture the dynamic characteristics of earthquakes,emphasizing the minimum safety factor of the slope in the seismic time history as a stability indicator.In contrast,the pseudo-static method may yield unsafe results.(3)A safety factor expression considering hydrostatic pressure is proposed.A negative correlation was observed between the height of the water level line and the minimum safety factor.展开更多
Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high c...Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.展开更多
Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering const...Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering construction.Using a modified split Hopkinson pressure bar(SHPB)system,five groups of single-flawed specimens with the axial prestress ratio from 0 to 0.8 are tested at the strain rates in the range of 65-205 s-1under a fixed radial prestress.Our results indicate that both the dynamic strength and total strength show significant positive linear correlations with the strain rate,and the dynamic strength shows more strain rate sensitivity under higher axial prestress.The dynamic strength and corresponding failure strain decrease with increasing axial prestress,while the total strength is barely affected by the axial prestress.The dynamic elastic modulus initially increases before the axial prestress ratio reaches 0.6 and then decreases.The failure pattern of tested specimens changes from single diagonal failure to an“X”shaped conjugated failure as axial prestress increases.Furthermore,the progressive cracking processes of confined single-flawed specimens under different axial prestresses are numerically visualized by the discrete element method(DEM).Based on the displacement trend lines on both sides of cracking surface,five crack types are identified and classified in our simulation.The displacement field distributions of the DEM models reveal that the macroscopic single diagonal failure under lower axial prestress is mainly controlled by mixed tensile-shear cracks,while the“X”shaped conjugated failure under higher axial prestress is shear dominated.展开更多
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat...Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.展开更多
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
The cracking phenomenon of the vast underground rock stratum that has been accumulated for long years due to earghquakes is basically similar to the cracking process of the focus of an seism or a rock specimen.
In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many...In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.展开更多
基金support from the Australian Research Council(ARC)through Discovery Project DP210102224.
文摘The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
基金the financial support from the Natural Science Foundation of Hebei Province(Grant No.E2020050012)the National Natural Science Foundation of China(NSFC)(Grant No.52178324)the National Key Research and Development Project of China,the Ministry of Science and Technology of China(Grant No.2018YFC1505504).
文摘Thermal cracking of rocks can significantly affect the durability of underground structures in engineering practices such as geothermal energy extraction,storage of nuclear waste and tunnelling in freezeethaw cycle induced areas.It is a scenario of strong coupled thermomechanical process involving discontinuity behaviours of rocks.In this context,a numerical model was proposed to investigate the thermal cracking of rocks,in a framework of the continuous-discontinuous element method(CDEM)for efficiently capturing the initiation and propagation of multiple cracks.A simplex integration strategy was adopted to account for the influences of temperature-dependent material properties.Several benchmark tests were considered and the obtained results were compared with analytical solutions and numerical results from the literature.The results show that the fracture degree of the cases when considering temperature-dependent material parameters had 10%differences approximately compared with the cases with constant parameters.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
基金Major Program of Shandong Provincial Natural Science Foundation(No.ZR2019ZD13)Major Scientifc and Technological Innovation Project of Shandong Provincial Key Research Development Program(No.2019SDZY02)Project of Taishan Scholar in Shandong Province.
文摘Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is the evolution of rock failure with diferent master crack types as investigated using Brazilian splitting tests(BSTs),direct shear tests(DSTs),and uniaxial compression tests(UCTs).The AE parameters and typical modes of each fracture type were obtained,and the energy release characteristics of each fracture mechanism were discussed.From the observed changes in the AE parameters,the rock fracture process exhibits characteristics of staged intensifcation.The scale and energy level of crack activity in the BSTs were signifcantly lower than those in the DSTs and UCTs.The proportion of tensile cracks in the BSTs was 65%–75%,while the proportions of shear cracks in the DSTs and UCTs were 75%–85%and 70%–75%,respectively.During the rock loading process under diferent conditions,failure was accompanied by an increased number of shear cracks.The amplitude,duration,and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather than tensile ones,and most of the medium-and high-energy signals had medium to low frequencies.After calculating the proposed energy amplitude ratio,the energy release of shear cracks was found to exceed that of tensile cracks at the same fracture scale.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51978292,42077254 and 51874144).
文摘In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.
基金Financial support for this study, provided by the Key Basic Research Program of China (973) (No. 2007CB209407), is gratefully acknowledged
文摘A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802)。
文摘The mechanical characteristics and failure behavior of rocks containing flaws or discontinuities have received wide attention in the field of rock mechanics.When external loads are applied to rock materials,stress-induced cracks would initiate and propagate from the flaws,ultimately leading to the irreversible failure of rocks.To investigate the cracking behavior and the effect of flaw geometries on the mechanical properties of rock materials,a series of samples containing one,two and multiple flaws have been widely investigated in the laboratory.In this paper,the experimental results for pre-cracked rocks under quasistatic compression were systematically reviewed.The progressive failure process of intact rocks is briefly described to reveal the background for experiments on samples with flaws.Then,the nondestructive measurement techniques utilized in experiments,such as acoustic emission(AE),X-ray computed tomography(CT),and digital image correlation(DIC),are summarized.The mechanical characteristics of rocks with different flaw geometries and under different loading conditions,including the geometry of pre-existing flaws,flaw filling condition and confining pressure,are discussed.Furthermore,the cracking process is evaluated from the perspective of crack initiation,coalescence,and failure patterns.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.
基金Joint Seismological Science Foundation of China (95-07-434) and the MOST under contract 2001BA601B02.
文摘The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magnetic field and self-poten-tial during rock cracking was carried out in a magnetic field-free space. The results revealing in detail the whole process of the occurrences of electric and magnetic anomalies are significant for understanding the microscopic mechanism of ULF electric and magnetic signals. The experiment indicated that at the initial stage the slow changes in strain, self-potential and magnetic field with small amounts appeared firstly near the source of initial cracking, and then extended as the crack developed on. In the time domain, the self-potential anomaly emerged first and ULF magnetic field changes arose then. The shape of the ULF electric and magnetic anomaly varied ob-viously in early-, mid- and late-term of the test. The authors attributed the pulse-like changes of self-potential to the generation and movement of the accumulated electric charges during the cracking caused by charge separation on the crack tips within the sample. While the magnetic pulses of shorter-period at the last stage of the test, may be induced by instantaneous electric current of the accumulated charge during the cracking acceleration. The technical method and the observational results of this experiment are given in detail and the microscopic mechanism of elec-tric and magnetic precursors before earthquake are discussed in the present paper as well.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金financially supported by the National Natural Science Foundation of China(No.51978666)the Hunan Province Science Fund for Distinguished Young Scholars(No.2021JJ10063)+3 种基金the Scientific and Technological Progress and Innovation Project of Hunan Provincial Department of Transportation(No.202115)the Fundamental Research Funds for the Central Universities of Central South University(NO.2023ZZTS0677)the Natural Science Foundation of Hunan Province(NO.2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)。
文摘Earthquakes have significant impact on rock slopes,thus studying the seismic stability of double-slider rock slopes containing tension cracks is crucial.We proposed an analysis method on the seismic dynamic slope stability.This method utilizes discrete Fourier transform to decompose real earthquake waves into a combination of harmonic waves.These waves are then used in conjunction with the pseudo-dynamic method and safety factor calculation formula to compute the safety factor.This approach accurately captures the influence of seismic time history characteristics on the dynamic stability of double-slider rock slopes containing tension cracks.The minimum safety factor in the obtained time history curves of the safety factor reflects the most unfavorable state of the slopes under seismic effects.Quantitative analysis is conducted using six sets of actual earthquake ground motion data obtained from the Pacific Earthquake Engineering Research Center’s NGAWest2 ground-shaking record database.The conclusions are as follows:(1)There is an inverse correlation between the average seismic acceleration amplitude and the minimum safety factor.Conversely,the seismic acceleration amplitude standard deviation shows a positive correlation with the minimum safety factor.The global sensitivity of geometric parameters in the slope model is higher than other influencing factors.(2)The proposed dynamic stability analysis method can capture the dynamic characteristics of earthquakes,emphasizing the minimum safety factor of the slope in the seismic time history as a stability indicator.In contrast,the pseudo-static method may yield unsafe results.(3)A safety factor expression considering hydrostatic pressure is proposed.A negative correlation was observed between the height of the water level line and the minimum safety factor.
基金supports by National Natural Science Foundation of China(Grant Nos.51874351 and 52078495)Excellent Postdoctoral Innovative Talents Project of Hunan Province,China(Grant No.2020RC2001).
文摘Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52039007and 52009086)the Youth Science and Technology Innovation Team of Sichuan Province,China(Grant No.2020JDTD0001)。
文摘Accurately characterizing the mechanical responses and cracking mechanism of three-dimensional confined fractured rocks under coupled static-dynamic loading is of paramount importance for underground engineering construction.Using a modified split Hopkinson pressure bar(SHPB)system,five groups of single-flawed specimens with the axial prestress ratio from 0 to 0.8 are tested at the strain rates in the range of 65-205 s-1under a fixed radial prestress.Our results indicate that both the dynamic strength and total strength show significant positive linear correlations with the strain rate,and the dynamic strength shows more strain rate sensitivity under higher axial prestress.The dynamic strength and corresponding failure strain decrease with increasing axial prestress,while the total strength is barely affected by the axial prestress.The dynamic elastic modulus initially increases before the axial prestress ratio reaches 0.6 and then decreases.The failure pattern of tested specimens changes from single diagonal failure to an“X”shaped conjugated failure as axial prestress increases.Furthermore,the progressive cracking processes of confined single-flawed specimens under different axial prestresses are numerically visualized by the discrete element method(DEM).Based on the displacement trend lines on both sides of cracking surface,five crack types are identified and classified in our simulation.The displacement field distributions of the DEM models reveal that the macroscopic single diagonal failure under lower axial prestress is mainly controlled by mixed tensile-shear cracks,while the“X”shaped conjugated failure under higher axial prestress is shear dominated.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFC3008300,Grant No.2019YFC1509702)the National Natural Science Foundation of China(Grant No.42172296).
文摘Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
文摘The cracking phenomenon of the vast underground rock stratum that has been accumulated for long years due to earghquakes is basically similar to the cracking process of the focus of an seism or a rock specimen.
文摘In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.