Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the work...Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.展开更多
The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phas...The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about th...A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.展开更多
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated...Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.展开更多
Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-async...Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.展开更多
With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Consider...With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Considering that the global positioning system(GPS)cant be utilized in the subway and the ground equipment is complex and expensive,a self-positioning method based on inertial measurement unit(IMU)and speed sensor is put forward,and the track electronic map is used to reduce the error.This method can suppress the error divergence of Strapdown inertial navigation system(SINS)and reduce the cumulative error of dead reckoning(DR)due to attitude error.In accordance with the particularity of railway lines,using the least squares method to match the line and revise the error caused by the navigation,can greatly improve the positioning accuracy and reduce the dependency on the ground equipment,and the costs of construction and maintenance can be lowered.展开更多
The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will l...The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.展开更多
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
基金This work was supported by the National Nature Science Foundation of China(Grant No.5200110367)Natural Science Foundation of Jiangsu Province(Grant No.SBK2020043219)+1 种基金Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province(Grant No.19KJB510052)NUPTSF(Grant No.NY219023).
文摘Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.
文摘The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
文摘A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.
基金supported by the National Natural Science Foundation of China(61722301)
文摘Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.
基金supported by the National Natural Science Foundation of China(61273333)
文摘Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.
基金Gansu Province Natural Youth Fund(No.1606RJYA225)Gansu Province Science and Technology Support Program(No.1604GKCA009)+1 种基金Natural Science Foundation of Gansu Province(No.1606RJYA225)Gansu Province Science and Technology Support Program(No.1604GKCA009)
文摘With the development of rail transit,subway is playing an increasingly important role in peoples daily life.The positioning technology of subway is the key of communication based on train control system(CBTC).Considering that the global positioning system(GPS)cant be utilized in the subway and the ground equipment is complex and expensive,a self-positioning method based on inertial measurement unit(IMU)and speed sensor is put forward,and the track electronic map is used to reduce the error.This method can suppress the error divergence of Strapdown inertial navigation system(SINS)and reduce the cumulative error of dead reckoning(DR)due to attitude error.In accordance with the particularity of railway lines,using the least squares method to match the line and revise the error caused by the navigation,can greatly improve the positioning accuracy and reduce the dependency on the ground equipment,and the costs of construction and maintenance can be lowered.
基金Project supported in part by Program for New Century Excellent Talents in University (NCET) of China
文摘The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.