针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富...针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。展开更多
The Unmanned Surface Vehicle(USV)navigation system needs an accurate,firm,and reliable performance to avoid obstacles,as well as carry out automatic movements during missions.The Global Positioning System(GPS)is often...The Unmanned Surface Vehicle(USV)navigation system needs an accurate,firm,and reliable performance to avoid obstacles,as well as carry out automatic movements during missions.The Global Positioning System(GPS)is often used in these systems to provide absolute position information.However,the GPS measurements are affected by external conditions such as atmospheric bias and multipath effects.This leads to the inability of the stand-alone GPS to provide accurate positioning for the USV systems.One of the solutions to correct the errors of this sensor is by conducting GPS and Inertial Measurement Unit(IMU)fusion.The IMU sensor is complementary to the GPS and not affected by external conditions.However,it accumulates noise as time elapses.Therefore,this study aims to determine the fusion of the GPS and IMU sensors for the i-Boat navigation system,which is a USV developed by Institut Teknologi Sepuluh Nopember(ITS)Surabaya.Using the Unscented Kalman filter(UKF),sensor fusion was carried out based on the state equation defined by the dynamic and kinematic mathematical model of ship motion in 6 degrees of freedom.Then the performance of this model was tested through several simulations using different combinations of attitude measurement data.Two scenarios were conducted in the simulations:attitude measurement inclusion and exclusion(Scenarios I and II,respectively).The results showed that the position estimation in Scenario II was better than in Scenario I,with the Root Mean Square Error(RMSE)value of 0.062 m.Further simulations showed that the presence of attitude measurement data caused a decrease in the fusion accuracy.The UKF simulation with eight measurement parameters(Scenarios A,B and C)and seven measurement parameters(Scenarios D,E and F),as well as analytical attitude movement,indicated that yaw data had the largest noise accumulation compared to roll and pitch.展开更多
Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage t...Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage to the ecosystem.The location of the incident and the hotspot can sometimes have an impact on earlyfire detection systems.With the advancement of intelligent sen-sor-based control technologies,the multi-sensor data fusion technique integrates data from multiple sensor nodes.The primary objective to avoid wildfire is to identify the exact location of wildfire occurrence,allowingfire units to respond as soon as possible.Thus to predict the occurrence offire in forests,a fast and effective intelligent control system is proposed.The proposed algorithm with decision tree classification determines whetherfire detection parameters are in the acceptable range and further utilizes a fuzzy-based optimization to optimize the complex environment.The experimental results of the proposed model have a detection rate of 98.3.Thus,providing real-time monitoring of certain environ-mental variables for continuous situational awareness and instant responsiveness.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and...To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) g...The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth information on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observable Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of the developed system and methods.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm ba...In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.展开更多
When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include ...When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.展开更多
This paper presents a method for identification of the hydrodynamic coefficients of the dive plane of an autonomous underwater vehicle. The proposed identification method uses the governing equations of motion to esti...This paper presents a method for identification of the hydrodynamic coefficients of the dive plane of an autonomous underwater vehicle. The proposed identification method uses the governing equations of motion to estimate the coefficients of the linear damping, added mass and inertia, cross flow drag and control. Parts of data required by the proposed identification method are not measured by the onboard instruments. Hence, an optimal fusion algorithm is devised which estimates the required data accurately with a high sampling rate. To excite the dive plane dynamics and obtain the required measurements, diving maneuvers should be performed. Hence, a reliable controller with satisfactory performance and stability is needed. A cascaded controller is designed based on the coefficients obtained using a semi-empirical method and its robustness to the uncertainties is verified by the μ-analysis method. The performance and accuracy of the identification and fusion algorithms are investigated through 6-DOF numerical simulations of a realistic autonomous underwater vehicle.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continu...Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
文摘针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。
基金the i-Boat ITS TeamDRPM ITS IndonesiaWorld-Class Professor Program (Ministry of Higher Education, Research, and Technology, Indonesia) for the data and financial support of this study
文摘The Unmanned Surface Vehicle(USV)navigation system needs an accurate,firm,and reliable performance to avoid obstacles,as well as carry out automatic movements during missions.The Global Positioning System(GPS)is often used in these systems to provide absolute position information.However,the GPS measurements are affected by external conditions such as atmospheric bias and multipath effects.This leads to the inability of the stand-alone GPS to provide accurate positioning for the USV systems.One of the solutions to correct the errors of this sensor is by conducting GPS and Inertial Measurement Unit(IMU)fusion.The IMU sensor is complementary to the GPS and not affected by external conditions.However,it accumulates noise as time elapses.Therefore,this study aims to determine the fusion of the GPS and IMU sensors for the i-Boat navigation system,which is a USV developed by Institut Teknologi Sepuluh Nopember(ITS)Surabaya.Using the Unscented Kalman filter(UKF),sensor fusion was carried out based on the state equation defined by the dynamic and kinematic mathematical model of ship motion in 6 degrees of freedom.Then the performance of this model was tested through several simulations using different combinations of attitude measurement data.Two scenarios were conducted in the simulations:attitude measurement inclusion and exclusion(Scenarios I and II,respectively).The results showed that the position estimation in Scenario II was better than in Scenario I,with the Root Mean Square Error(RMSE)value of 0.062 m.Further simulations showed that the presence of attitude measurement data caused a decrease in the fusion accuracy.The UKF simulation with eight measurement parameters(Scenarios A,B and C)and seven measurement parameters(Scenarios D,E and F),as well as analytical attitude movement,indicated that yaw data had the largest noise accumulation compared to roll and pitch.
文摘Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage to the ecosystem.The location of the incident and the hotspot can sometimes have an impact on earlyfire detection systems.With the advancement of intelligent sen-sor-based control technologies,the multi-sensor data fusion technique integrates data from multiple sensor nodes.The primary objective to avoid wildfire is to identify the exact location of wildfire occurrence,allowingfire units to respond as soon as possible.Thus to predict the occurrence offire in forests,a fast and effective intelligent control system is proposed.The proposed algorithm with decision tree classification determines whetherfire detection parameters are in the acceptable range and further utilizes a fuzzy-based optimization to optimize the complex environment.The experimental results of the proposed model have a detection rate of 98.3.Thus,providing real-time monitoring of certain environ-mental variables for continuous situational awareness and instant responsiveness.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金supported by the National Natural Science Foundation of China(No.51876114)the Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
基金the National Natural Science Foundation of China (61720106012 and 61403215)the Foundation of State Key Laboratory of Robotics (2006-003)the Fundamental Research Funds for the Central Universities for the financial support of this work.
文摘The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth information on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observable Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of the developed system and methods.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
基金Natural Science Foundation of Shaanxi Province(No.2019JQ-004)Scientific Research Plan Projects of Shaanxi Education Department(No.18JK0438)Youth Talent Promotion Project of Shaanxi Province(No.20180112)。
文摘In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.
文摘When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.
文摘This paper presents a method for identification of the hydrodynamic coefficients of the dive plane of an autonomous underwater vehicle. The proposed identification method uses the governing equations of motion to estimate the coefficients of the linear damping, added mass and inertia, cross flow drag and control. Parts of data required by the proposed identification method are not measured by the onboard instruments. Hence, an optimal fusion algorithm is devised which estimates the required data accurately with a high sampling rate. To excite the dive plane dynamics and obtain the required measurements, diving maneuvers should be performed. Hence, a reliable controller with satisfactory performance and stability is needed. A cascaded controller is designed based on the coefficients obtained using a semi-empirical method and its robustness to the uncertainties is verified by the μ-analysis method. The performance and accuracy of the identification and fusion algorithms are investigated through 6-DOF numerical simulations of a realistic autonomous underwater vehicle.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
文摘Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region;thereby increasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial sensors.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.