We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. ...We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056展开更多
A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. P...A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.展开更多
An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum i...An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.展开更多
We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a ...We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a spectral width of 9.7 nm and a repetition rate of 9.33 MHz. The emission wavelength is tunable along with the cavity length detuning in a wide range of 3 mm. The high detuning toleration is beneficial to achieve high temperature and vibration stability in all-fiber configuration lasers.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses a...We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.展开更多
A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate i...A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.展开更多
By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensati...By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.展开更多
An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of mai...An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of maintaining mode-locked operation against different pump power levels is investigated. An increasing pump power, in conjunction with minor adjustments to the polarization controller's quarter waveplate, results in a wider ellipticity range that can accommodate mode-locked operation. Other parameters such as noise, pulsewidth, and average output power are also observed to vary as the ellipticity changes.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power...We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power with M_(x)^(2)=1.017 and M_(y)^(2)=1.016 in the horizontal and vertical directions,respectively.At the repetition rate of 71.66 MHz,the optical pulse duration is 247 fs and the pulse energy is 140 nJ at the central wavelength of 1041 nm,corresponding to a peak power of 0.56 MW.In addition,we also generate continuous wave(CW)power of more than 15 W with TEM00 mode,corresponding to an optical-to-optical efficiency of 44.1%.展开更多
We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,inc...We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,increases from 0.89 ns to1.85 ns per round trip.In addition,with the increasing pump power,the number of bunched solitons increases from 3 up to 24linearly,while the average time separation in the soliton bunch varies irregularly between~0.80 and~1.52 ns.These results contribute to a more profound comprehension of nonlinear pulse dynamics in ultrafast fiber lasers.展开更多
The theory of double mode-locked lasers with F-P cavity is developed, with a closed-form analytical solution presented, and the theoretical results are compared with the experiments in literature.
基金Project supported by the National Major Scientific Instrument Development Project of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61205130)the Fundamental Research Funds for the Central Universities,China(Grant No.JB140502)
文摘We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056
基金Project supported by the National Natural Science Foundation of China(Grant No.61205130)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K5051305008)
文摘A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant Nos 2013M540288 and 2015M570290+2 种基金the Fundamental Research Funds for the Central Universities Grant under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61675188 and 61875052the Open Fund of Key Laboratory Pulse Power Laser Technology of China under Grant No SKL2016KF03
文摘We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a spectral width of 9.7 nm and a repetition rate of 9.33 MHz. The emission wavelength is tunable along with the cavity length detuning in a wide range of 3 mm. The high detuning toleration is beneficial to achieve high temperature and vibration stability in all-fiber configuration lasers.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0402105)
文摘We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti: sapphire laser.Central wavelength tunability as broad as 89 nm(736-825 nm) is achieved by adjusting the insertion of the prism.Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW.The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology,China(Grant No.2012BAC23B03)the National Basic Research Program of China(Grant No.2013CB922401)the National Natural Science Foundation of China(Grant No.11474002)
文摘A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61078032,61378024,60938001,and 61078053)the Science and Technology Development Projects of Shandong Province,China(Grant No.2013GGX10108)
文摘By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.
基金funding for this research under the grants RU 010-2016GA 010-2014 (ULUNG)LRGS (2015) NGOD/ UM/KPT
文摘An elliptical initial polarization state is essential for generating mode-locked pulses using the nonlinear polarization rotation technique. In this work, the relationship between the ellipticity ranges capable of maintaining mode-locked operation against different pump power levels is investigated. An increasing pump power, in conjunction with minor adjustments to the polarization controller's quarter waveplate, results in a wider ellipticity range that can accommodate mode-locked operation. Other parameters such as noise, pulsewidth, and average output power are also observed to vary as the ellipticity changes.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.
基金the National Key R&D Program of China(No.2018YFB110720)the National Natural Science Foundation of China(Nos.61575217 and 91850209)the Strategic Priority Research Program of CAS(No.XDB16030200).
文摘We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power with M_(x)^(2)=1.017 and M_(y)^(2)=1.016 in the horizontal and vertical directions,respectively.At the repetition rate of 71.66 MHz,the optical pulse duration is 247 fs and the pulse energy is 140 nJ at the central wavelength of 1041 nm,corresponding to a peak power of 0.56 MW.In addition,we also generate continuous wave(CW)power of more than 15 W with TEM00 mode,corresponding to an optical-to-optical efficiency of 44.1%.
基金supported by the National Natural Science Foundation of China(Nos.61935013,61975133,and62005178)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)+3 种基金the Natural Science Foundation of Guangdong Province(No.2023A1515010093)the Science and Technology Innovation Commission of ShenzhenShenzhen Peacock Plan(Nos.KQTD20170330110444030,JCYJ20200109114018750,and JCYJ20220809170611004)Shenzhen University(No.2019075)。
文摘We demonstrate the generation of a unique regime of multiple solitons in a Tm-doped ultrafast fiber laser at~1938.72 nm.The temporal pulse-to-pulse separation among the multiple solitons,10 in a single-pulse bunch,increases from 0.89 ns to1.85 ns per round trip.In addition,with the increasing pump power,the number of bunched solitons increases from 3 up to 24linearly,while the average time separation in the soliton bunch varies irregularly between~0.80 and~1.52 ns.These results contribute to a more profound comprehension of nonlinear pulse dynamics in ultrafast fiber lasers.
基金Project supported by the National Natural Science Foundation of China, and in part by the Opening Laboratory of Photoelectronics and Information Engineering of the State Education Commission of China.
文摘The theory of double mode-locked lasers with F-P cavity is developed, with a closed-form analytical solution presented, and the theoretical results are compared with the experiments in literature.