Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectrosc...Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.展开更多
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol...Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.展开更多
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec...Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.展开更多
Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-ind...Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Laser writing is a fast and efficient technology that can produce graphene with a high surface area,whereas laser-induced graphene(LIG)has been widely used in both physics and chemical device application.It is necessa...Laser writing is a fast and efficient technology that can produce graphene with a high surface area,whereas laser-induced graphene(LIG)has been widely used in both physics and chemical device application.It is necessary to update this important progress because it may provide a clue to consider the current challenges and possible future directions.In this review,the basic principles of LIG fabrication are first briefly described for a detailed understanding of the lasing process.Sub-sequently,we summarize the physical device applications of LIGs and describe their advantages,including flexible electronics and energy harvesting.Then,chemical device applications are categorized into chemical sensors,supercapacitors,batteries,and electrocatalysis,and a detailed interpretation is provided.Finally,we present our vision of future developments and challenges in this exciting research field.展开更多
The detection of manganese(Mn)in steel by laser-induced breakdown spectroscopy(LIBS)provides essential information for steelmaking.However,self-absorption greatly disrupts the LIBS spectral lines of Mn with high conte...The detection of manganese(Mn)in steel by laser-induced breakdown spectroscopy(LIBS)provides essential information for steelmaking.However,self-absorption greatly disrupts the LIBS spectral lines of Mn with high content.In this study,to minimize self-absorption for Mn spectral lines in LIBS,laser-induced fluorescence(LIF)was applied.Compared with conventional LIBS,the self-absorption factors(α)of Mn I 403.08,403.31,and 403.45 nm lines were reduced by 90%,88%,and 88%,respectively;the root mean square errors of crossvalidation were decreased by 88%,85%,and 87%,respectively;the average relative errors were reduced by 93%,90%,and 91%,respectively;and average relative standard deviations were decreased by 29%,32%,and 33%,respectively.The LIBS-LIF was shown to successfully minimize the self-absorption effect and spectral intensity fluctuation and improve detection accuracy.展开更多
The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfull...The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfully dope the single crystalline ZnO with Ag by the laser-induced method,which can effectively further post-treat grown samples.Magnetron sputtering was used to coat the Ag film with a thickness of about 50 nm on the single crystalline ZnO.Neodymium-doped yttrium aluminum garnet(Nd:YAG)laser was chosen to irradiate the Ag-capped ZnO samples,followed by annealing at700℃for two hours to form ZnO:Ag.The three-dimensional(3D)information of the elemental distribution of Ag in ZnO was obtained through time-of-flight secondary ion mass spectrometry(TOF-SIMS).TOF-SIMS and core-level x-ray photoelectron spectroscopy(XPS)demonstrated that the Ag impurities could be effectively doped into single crystalline ZnO samples as deep as several hundred nanometers.Obvious broadening of core level XPS profiles of Ag from the surface to depths of hundred nms was observed,indicating the variance of chemical state changes in laser-induced Ag-doped ZnO.Interesting features of electronic mixing states were detected in the valence band XPS of ZnO:Ag,suggesting the strong coupling or interaction of Ag and ZnO in the sample rather than their simple mixture.The Ag-doped ZnO also showed a narrower bandgap and a decrease in thermal diffusion coefficient compared to the pure ZnO,which would be beneficial to thermoelectric performance.展开更多
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno...Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.展开更多
The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma...The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.展开更多
Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superp...Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data.展开更多
To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface...To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface of the aramid fabric(AF)and then electroless plating copper.After LIG treatment,the porous AF demonstrates admirable conductivity due to the generation of graphene.The superior surface resistance of the conductive fabric can reach 1.57Ω/sq after copper deposition,and the average EMI shielding effectiveness(SE)can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz,with the EMW absorption accounting for about 80%.The proposed technology provides a new idea for preparation of flexible EMI shielding materials.展开更多
Time-integrated optical emission analysis of laser-induced plasma on Teflon is presented.Plasma was induced under atmospheric pressure air using transversely excited atmospheric CO_(2) laser pulses.Teflon is a C-based...Time-integrated optical emission analysis of laser-induced plasma on Teflon is presented.Plasma was induced under atmospheric pressure air using transversely excited atmospheric CO_(2) laser pulses.Teflon is a C-based polymer that is,among other things,interesting as a substrate for laser-induced breakdown spectroscopy analysis of liquid samples.This study aimed to determine the optimal experimental conditions for obtaining neutral and ionized C spectral lines and C2 and CN molecular band emission suitable for spectrochemical purposes.Evaluation of plasma parameters was done using several spectroscopic techniques.Stark profiles of appropriate C ionic lines were used to determine electron number density.The ratio of the integral intensity of ionic-to-atomic C spectral lines was used to determine the ionization temperature.A spectral emission of C2 Swan and CN violet bands system was used to determine the temperature of the colder,peripheral parts of plasma.We critically analyzed the use of molecular emission bands as a tool for plasma diagnostics and suggested methods for possible improvements.展开更多
When a high energy nanosecond(ns)laser induces breakdown in the air,the plasma density generated in the rarefied atmosphere is much smaller than that at normal pressure.It is associated with a relatively lower absorpt...When a high energy nanosecond(ns)laser induces breakdown in the air,the plasma density generated in the rarefied atmosphere is much smaller than that at normal pressure.It is associated with a relatively lower absorption coefficient and reduces energy loss of the laser beam at low pressure.In this paper,the general transmission characterizations of a Joule level 10 ns 1064 nm focused laser beam are investigated both theoretically and experimentally under different pressures.The evolution of the electron density(n_(e)),the changes in electron temperature(T_(e))and the variation of laser intensity(I)are employed for numerical analyses in the simulation model.For experiments,four optical image transfer systems with focal length(f)of 200 mm are placed in a chamber and employed to focus the laser beam and produce plasmas at the focus.The results suggest that the transmittance increases obviously with the decreasing pressure and the plasma channels on the transmission path can be observed by the self-illumination.The simulation results agree well with the experimental data.The numerical model presents that the maximum n_e at the focus can reach 10^(19)cm^(-3),which is far below the critical density(n_(c)).As a result,the laser beam is not completely shielded by the plasmas.展开更多
Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppress...Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppressing was developed using laser-induced plasma acoustic signals to correct the original spectrum,thereby improving the analysis accuracy of the soil elements.A good linear relationship was investigated firstly between the original spectral intensity and the acoustic signals.The relative standard deviations(RSDs)of Mg,Ca,Sr,and Ba elements were then calculated for both the original spectrum and the spectrum with the acoustic correction,and the RSDs were significantly reduced with the acoustic correction.Finally,calibration curves of MgⅠ285.213 nm,CaⅠ422.673 nm,SrⅠ460.733 nm and BaⅡ455.403 nm were established to assess the analytical performance of the proposed acoustic correction method.The values of the determination coefficient(R~2)of the calibration curves for Mg,Ca,Sr,and Ba elements,corrected by the acoustic amplitude,are improved from 0.9845,0.9588,0.6165,and 0.6490 to 0.9876,0.9677,0.8768,and 0.8209,respectively.The values of R~2 of the calibration curves corrected by the acoustic energy are further improved to 0.9917,0.9827,0.8835,and 0.8694,respectively.These results suggest that the matrix effect of LIBS on soils can be clearly improved by using acoustic correction,and acoustic energy correction works more efficiently than acoustic amplitude correction.This work provides a simple and efficient method for correcting matrix effects in the element analysis of soils by acoustic signals.展开更多
The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is stil...The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.展开更多
Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [1...Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U2241288 and 11974359).
文摘Taking three typical soft samples prepared respectively by loose packings of 77-,95-,and 109-μm copper grains as examples,we perform an experiment to investigate the energy-dependent laser-induced breakdown spectroscopy(LIBS)of soft materials.We discovered a reversal phenomenon in the trend of energy dependence of plasma emission intensity:increasing initially and then decreasing separated by a well-defined critical energy.The trend reversal is attributed to the laser-induced recoil pressure at the critical energy just matching the sample's yield strength.As a result,a one-to-one correspondence can be well established between the samples'yield stress and the critical energy that is easily obtainable from LIBS measurements.This allows us to propose an innovative method for estimating the yield stress of soft materials via LIBS with attractive advantages including in-situ remote detection,real-time data collection,and minimal destructive to sample.
文摘Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.
基金supported in part by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.U2241288 and 11974359)Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)。
文摘Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.
基金financially supported by the National Key R&D Program Projects of China (No.2021YFB3202402)National Natural Science Foundation of China (No.62173321)。
文摘Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金financially supported by the National Natural Science Foundation of China(NSFC,52003225)Open Fund of Jiangsu Key Laboratory of Nano Devices(21SZ01).
文摘Laser writing is a fast and efficient technology that can produce graphene with a high surface area,whereas laser-induced graphene(LIG)has been widely used in both physics and chemical device application.It is necessary to update this important progress because it may provide a clue to consider the current challenges and possible future directions.In this review,the basic principles of LIG fabrication are first briefly described for a detailed understanding of the lasing process.Sub-sequently,we summarize the physical device applications of LIGs and describe their advantages,including flexible electronics and energy harvesting.Then,chemical device applications are categorized into chemical sensors,supercapacitors,batteries,and electrocatalysis,and a detailed interpretation is provided.Finally,we present our vision of future developments and challenges in this exciting research field.
基金financially supported by National Natural Science Foundation of China(No.62005078)the Scientific Research Foundation of Hunan Provincial Education Department(No.21B0477)the Natural Science Foundation of Hunan Province(No.2020JJ5206)。
文摘The detection of manganese(Mn)in steel by laser-induced breakdown spectroscopy(LIBS)provides essential information for steelmaking.However,self-absorption greatly disrupts the LIBS spectral lines of Mn with high content.In this study,to minimize self-absorption for Mn spectral lines in LIBS,laser-induced fluorescence(LIF)was applied.Compared with conventional LIBS,the self-absorption factors(α)of Mn I 403.08,403.31,and 403.45 nm lines were reduced by 90%,88%,and 88%,respectively;the root mean square errors of crossvalidation were decreased by 88%,85%,and 87%,respectively;the average relative errors were reduced by 93%,90%,and 91%,respectively;and average relative standard deviations were decreased by 29%,32%,and 33%,respectively.The LIBS-LIF was shown to successfully minimize the self-absorption effect and spectral intensity fluctuation and improve detection accuracy.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3605403)。
文摘The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfully dope the single crystalline ZnO with Ag by the laser-induced method,which can effectively further post-treat grown samples.Magnetron sputtering was used to coat the Ag film with a thickness of about 50 nm on the single crystalline ZnO.Neodymium-doped yttrium aluminum garnet(Nd:YAG)laser was chosen to irradiate the Ag-capped ZnO samples,followed by annealing at700℃for two hours to form ZnO:Ag.The three-dimensional(3D)information of the elemental distribution of Ag in ZnO was obtained through time-of-flight secondary ion mass spectrometry(TOF-SIMS).TOF-SIMS and core-level x-ray photoelectron spectroscopy(XPS)demonstrated that the Ag impurities could be effectively doped into single crystalline ZnO samples as deep as several hundred nanometers.Obvious broadening of core level XPS profiles of Ag from the surface to depths of hundred nms was observed,indicating the variance of chemical state changes in laser-induced Ag-doped ZnO.Interesting features of electronic mixing states were detected in the valence band XPS of ZnO:Ag,suggesting the strong coupling or interaction of Ag and ZnO in the sample rather than their simple mixture.The Ag-doped ZnO also showed a narrower bandgap and a decrease in thermal diffusion coefficient compared to the pure ZnO,which would be beneficial to thermoelectric performance.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.
基金National Key Research and Development Program of China(Nos.2017YFE0301306,2017YFE0301300,and 2017YFE0301506)Fujian Province Industrial Guidance Project(No.2019H0011).
文摘The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.
基金financial support from the Scientific Research Program for Young Talents of China National Nuclear Corporation(2020)National Natural Science Foundation of China(Nos.51906124 and 62205172)+1 种基金Shanxi Province Science and Technology Department(No.20201101013)Guoneng Bengbu Power Generation Co.,Ltd(No.20212000001)。
文摘Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data.
基金Shanghai Sailing Program,Shanghai,China(No.22YF1400500)Fundamental Research Funds for the Central Universities,China(Nos.2232022D-11 and 22D128102/007)Shanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission,Shanghai,China(No.20ZR1401600)。
文摘To meet the demands for flexible electromagnetic interference(EMI)shielding materials,a type of conductive fabric is prepared by generating three-dimensional(3D)porous laser-induced graphene(LIG)in situ on the surface of the aramid fabric(AF)and then electroless plating copper.After LIG treatment,the porous AF demonstrates admirable conductivity due to the generation of graphene.The superior surface resistance of the conductive fabric can reach 1.57Ω/sq after copper deposition,and the average EMI shielding effectiveness(SE)can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz,with the EMW absorption accounting for about 80%.The proposed technology provides a new idea for preparation of flexible EMI shielding materials.
基金funded by the Ministry of Education,Science and Technological Development of the Republic of Serbia(Nos.451-03-68/2022-14/200017 and 451-03-68/2022-14/200146)the financial support of the State Committee on Science and Technology of the Republic of Belarusthe Belarusian Republican Foundation for Fundamental Research(No.F20SRBG-001)。
文摘Time-integrated optical emission analysis of laser-induced plasma on Teflon is presented.Plasma was induced under atmospheric pressure air using transversely excited atmospheric CO_(2) laser pulses.Teflon is a C-based polymer that is,among other things,interesting as a substrate for laser-induced breakdown spectroscopy analysis of liquid samples.This study aimed to determine the optimal experimental conditions for obtaining neutral and ionized C spectral lines and C2 and CN molecular band emission suitable for spectrochemical purposes.Evaluation of plasma parameters was done using several spectroscopic techniques.Stark profiles of appropriate C ionic lines were used to determine electron number density.The ratio of the integral intensity of ionic-to-atomic C spectral lines was used to determine the ionization temperature.A spectral emission of C2 Swan and CN violet bands system was used to determine the temperature of the colder,peripheral parts of plasma.We critically analyzed the use of molecular emission bands as a tool for plasma diagnostics and suggested methods for possible improvements.
基金Project supported by the Science and Technology Innovation Foundation of the Chinese Academy of Sciences(Grant No.CXJJ-20S020)。
文摘When a high energy nanosecond(ns)laser induces breakdown in the air,the plasma density generated in the rarefied atmosphere is much smaller than that at normal pressure.It is associated with a relatively lower absorption coefficient and reduces energy loss of the laser beam at low pressure.In this paper,the general transmission characterizations of a Joule level 10 ns 1064 nm focused laser beam are investigated both theoretically and experimentally under different pressures.The evolution of the electron density(n_(e)),the changes in electron temperature(T_(e))and the variation of laser intensity(I)are employed for numerical analyses in the simulation model.For experiments,four optical image transfer systems with focal length(f)of 200 mm are placed in a chamber and employed to focus the laser beam and produce plasmas at the focus.The results suggest that the transmittance increases obviously with the decreasing pressure and the plasma channels on the transmission path can be observed by the self-illumination.The simulation results agree well with the experimental data.The numerical model presents that the maximum n_e at the focus can reach 10^(19)cm^(-3),which is far below the critical density(n_(c)).As a result,the laser beam is not completely shielded by the plasmas.
基金financially supported by National Natural Science Foundation of China(No.12064029)by Jiangxi Provincial Natural Science Foundation(No.20202BABL202024)by the Open project program of Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province(No.ED202208094)。
文摘Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppressing was developed using laser-induced plasma acoustic signals to correct the original spectrum,thereby improving the analysis accuracy of the soil elements.A good linear relationship was investigated firstly between the original spectral intensity and the acoustic signals.The relative standard deviations(RSDs)of Mg,Ca,Sr,and Ba elements were then calculated for both the original spectrum and the spectrum with the acoustic correction,and the RSDs were significantly reduced with the acoustic correction.Finally,calibration curves of MgⅠ285.213 nm,CaⅠ422.673 nm,SrⅠ460.733 nm and BaⅡ455.403 nm were established to assess the analytical performance of the proposed acoustic correction method.The values of the determination coefficient(R~2)of the calibration curves for Mg,Ca,Sr,and Ba elements,corrected by the acoustic amplitude,are improved from 0.9845,0.9588,0.6165,and 0.6490 to 0.9876,0.9677,0.8768,and 0.8209,respectively.The values of R~2 of the calibration curves corrected by the acoustic energy are further improved to 0.9917,0.9827,0.8835,and 0.8694,respectively.These results suggest that the matrix effect of LIBS on soils can be clearly improved by using acoustic correction,and acoustic energy correction works more efficiently than acoustic amplitude correction.This work provides a simple and efficient method for correcting matrix effects in the element analysis of soils by acoustic signals.
基金supported by the National Key Research and Development Program of China(No.2019YFD0901701)National Natural Science Foundation of China(Nos.12174359and 61975190)Provincial Key Research and Development Program of Shandong,China(No.2019GHZ010)。
文摘The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.
基金This work was supported by the National Natural Science Foundation of China (No.21273212 and No.21173205), the National Key Basic Research Program of China (No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), the Fundamental Research Funds for the Central Universities of China (No.WK2340000012), and the University of Science and Technology of China-National Synchrotron Radiation Laboratory (No.KY2340000021).
文摘Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.