A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained a...A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300-3200 ns.The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique.The influence of the probe beam on the electron density was found to be negligible,whereas its influence on electron temperature is evident.In addition,the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam,and gradually weakens with increasing time delay.Our results are helpful for further understanding the TS method and its application in plasma diagnostics.展开更多
The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influe...The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influence on the electron temperature's evolution while the effect of the flux limiter is not so significant. The simulations are in good agreement with the experiments only at some spatial points. A full comparison between the simulations and experiments indicates that the one-dimensional code is not accurate enough to characterize the laser-produced plasmas. A post-processor code based on the hydro code is developed to generate the streak image of the Thomson scattering spectra, which can be directly compared with the experimental data.展开更多
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and elec...As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.展开更多
A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for i...A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for improved confinement physics such as the edge transport barrier (H-mode) or the internal transport barrier of the helical plasma. The system has 25 spatial points with -10 mm resolution. Two high repetition Nd:YAG lasers (〉 550 m J@ 50 Hz) realize the measurement of the time evolution of the plasma profile with ~10 ms time intervals. Scattered light is collected by a large concave mirror (D----800 mm, f/2.25) with a solid angle of -100 mstr and transferred to interference filter polychromators by optical fiber bundles in a staircase form. The signal is amplified by newly designed fast preamplifiers with DC and AC output, which reduces the low frequency background noise. The signals are digitized with a multi-event QDC, fast gated integrators. The data acquisition is performed by a VME-based system operated by the CINOS.展开更多
In addition to the magnetic confinement fusion plasma,Thomson scattering has been applied to measure electron density and temperature of low-temperature plasmas.Based on a linear magnetized plasma device,a set of Thom...In addition to the magnetic confinement fusion plasma,Thomson scattering has been applied to measure electron density and temperature of low-temperature plasmas.Based on a linear magnetized plasma device,a set of Thomson scattering diagnostic system is designed to diagnose the plasma with n_(e)=10^(18)–10^(19)m^(-3)and T_(e)=2–5eV.Due to low plasma temperature and density,this diagnostic system needs high spectral resolution and collection efficiency to meet the requirements of electron velocity distribution function measurements.Through the bench test,it is confirmed that the spectral resolution reaches 0.01 nm,and theoretical collection efficiency is high enough to obtain a Thomson scattering spectrum by 1000 accumulations.展开更多
Primary physical design of the Thomson scattering system for EAST, including the configuration of the system and the design considerations of different sections of the system, is presented. The expected measurability ...Primary physical design of the Thomson scattering system for EAST, including the configuration of the system and the design considerations of different sections of the system, is presented. The expected measurability of this design, namely an electron temperature of 513 eV to 5 keV and a plasma density beyond 0.5× 10^19 m^-3, fulfills the requirements of the EAST operation.展开更多
X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2...X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.展开更多
Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scatterin...Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering off a collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.展开更多
A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)mo...A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.展开更多
基金This work is supported by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.11874051,11564037,61741513,11904293)the Special Fund Project for Guiding Scientific and Technological Inno-vation of Gansu Province(No.2019zx-10).
文摘A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS)method.The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300-3200 ns.The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique.The influence of the probe beam on the electron density was found to be negligible,whereas its influence on electron temperature is evident.In addition,the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam,and gradually weakens with increasing time delay.Our results are helpful for further understanding the TS method and its application in plasma diagnostics.
基金supported by Natural Science Foundation of China (Nos. 10375064, 10275056, 10176028)the National High Technology Programs on Inertially Confined Fusion of China
文摘The evolutions of the electron temperatures of Muminum plasmas produced with 0.351 μm laser are simulated by means of one-dimensional hydrodynamic code. The simulations show that the plasma geometry has strong influence on the electron temperature's evolution while the effect of the flux limiter is not so significant. The simulations are in good agreement with the experiments only at some spatial points. A full comparison between the simulations and experiments indicates that the one-dimensional code is not accurate enough to characterize the laser-produced plasmas. A post-processor code based on the hydro code is developed to generate the streak image of the Thomson scattering spectra, which can be directly compared with the experimental data.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)the Fundamental Research Funds for the Central Universities(Nos.DUT15RC(3)072,DUT15TD44,DUT16TD13)
文摘As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
基金supported by the Collaboration Program of the Laboratory for Complex Energy Processes,IAE,Kyoto Universitythe NIFS Collaborative Research Program (NIFS10KUHL030,NIFS09KUHL028,NIFS10KUHL033)
文摘A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for improved confinement physics such as the edge transport barrier (H-mode) or the internal transport barrier of the helical plasma. The system has 25 spatial points with -10 mm resolution. Two high repetition Nd:YAG lasers (〉 550 m J@ 50 Hz) realize the measurement of the time evolution of the plasma profile with ~10 ms time intervals. Scattered light is collected by a large concave mirror (D----800 mm, f/2.25) with a solid angle of -100 mstr and transferred to interference filter polychromators by optical fiber bundles in a staircase form. The signal is amplified by newly designed fast preamplifiers with DC and AC output, which reduces the low frequency background noise. The signals are digitized with a multi-event QDC, fast gated integrators. The data acquisition is performed by a VME-based system operated by the CINOS.
文摘In addition to the magnetic confinement fusion plasma,Thomson scattering has been applied to measure electron density and temperature of low-temperature plasmas.Based on a linear magnetized plasma device,a set of Thomson scattering diagnostic system is designed to diagnose the plasma with n_(e)=10^(18)–10^(19)m^(-3)and T_(e)=2–5eV.Due to low plasma temperature and density,this diagnostic system needs high spectral resolution and collection efficiency to meet the requirements of electron velocity distribution function measurements.Through the bench test,it is confirmed that the spectral resolution reaches 0.01 nm,and theoretical collection efficiency is high enough to obtain a Thomson scattering spectrum by 1000 accumulations.
基金supported by National Natural Science Foundation of China (Nos. 10725523, 10721505 and 10805056)
文摘Primary physical design of the Thomson scattering system for EAST, including the configuration of the system and the design considerations of different sections of the system, is presented. The expected measurability of this design, namely an electron temperature of 513 eV to 5 keV and a plasma density beyond 0.5× 10^19 m^-3, fulfills the requirements of the EAST operation.
基金supported by National Natural Science Foundation of China(Nos.11105147 and 11175197)the China Postdoctoral Science Foundation(Nos.20100480690,201104333)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Open Fund of the State Key Laboratory of High Field Laser Physics(SIOM)
文摘X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375064), and the National High Technology Inertial Confinement Fusion.
文摘Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering off a collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0402300,2017YFA0304900 and 2016YFA0300600)National Natural Science Foundation of China(Nos.11604334,11575099,11474347 and 11874051)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000and XDB07030000)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(KF201807)。
文摘A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.