期刊文献+
共找到61,904篇文章
< 1 2 250 >
每页显示 20 50 100
Study of plasma parameters of coaxial plasma source using triple Langmuir probe and Faraday cup diagnostics
1
作者 Sunil KANCHI Rohit SHUKLA Archana SHARMA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期94-100,共7页
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In... Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources. 展开更多
关键词 coaxial plasma source triple Langmuir probe Faraday cup plasma density plasma temperature
下载PDF
Final results of the first phase of the PROTO-SPHERA experiment: obtainment of the full current stable screw pinch and first evidences of the jet + torus combined plasma configuration
2
作者 Paolo MICOZZI Franco ALLADIO +21 位作者 Alessandro MANCUSO Vincenzo ZANZA Gerarda APRUZZESE Francesca BOMBARDA Luca BONCAGNI Paolo BURATTI Francesco FILIPPI Giuseppe GALATOLA TEKA Francesco GIAMMANCO Edmondo GIOVANNOZZI Andrea GROSSO Matteo IAFRATI Alessandro LAMPASI Violeta LAZIC Simone MAGAGNINO Simone MANNORI Paolo MARSILI Valerio PIERGOTTI Giuliano ROCCHI Alessandro SIBIO Benedetto TILIA Onofrio TUDISCO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期31-43,共13页
In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 2... In astrophysics, the boundary conditions for plasma phenomena are provided by nature and the astronomer faces the problem of understanding them from a variety of observations [Hester J J et al 1996 Astrophys. J. 456 225], on the other hand, in laboratory plasma experiments the electromagnetic boundary conditions become a major problem in the set-up of the machine that produces the plasma, an issue that has to be investigated step by step and to be modified and adapted with great patience, in particular in the case of an innovative plasma confinement experiment. The PROTO-SPHERA machine [Alladio F et al 2006 Nucl. Fusion 46 S613] is a magnetic confinement experiment, that emulates in the laboratory the jet + torus plasma configurations often observed in astrophysics: an inner magnetized jet of plasma centered on the(approximate) axis of symmetry and surrounded by a magnetized plasma torus orthogonal to this jet. The PROTO-SPHERA plasma is simply connected, i.e., no metal current conducting rod is linked to the plasma torus, while instead it is the inner magnetized plasma jet(in the following always called the plasma centerpost) that is linked to the torus. It is mandatory that no spurious plasma current path modifies the optimal shape of the plasma centerpost. Moreover, as the plasma torus is produced and sustained, in absence of any applied inductive electric field, by the inner plasma centerpost through magnetic reconnections [Taylor J B and Turner M F 1989 Nucl.Fusion 29 219], it is required as well that spurious current paths do not surround the torus on its outboard, in order not to lower the efficiency of the magnetic reconnections that maintain the plasma torus at the expense of the plasma centerpost. Boundary conditions have been corrected,up to the point that the first sustainment in steady state has been achieved for the combined plasma. 展开更多
关键词 laboratory plasmas magnetic confinement astrophysical plasmas
下载PDF
Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies
3
作者 王超 刘佳 +3 位作者 苌磊 卢凌峰 张世杰 周帆涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期480-487,共8页
This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagat... This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment. 展开更多
关键词 helicon plasma helicon wave helicon discharge radio frequency plasma source
下载PDF
Plasma density enhancement in radio-frequency hollow electrode discharge
4
作者 贺柳良 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期44-51,共8页
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s... The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes. 展开更多
关键词 RF capacitively coupled plasma sources plasma density enhancement hollow cathodeeffect hollow electrode
下载PDF
Characterization of distinct microbiota associated with androgenetic alopecia patients treated and untreated with platelet-rich plasma(PRP)
5
作者 Qian Zhang Yanan Wang +5 位作者 Cheng Ran Yingmei Zhou Zigang Zhao Tianhua Xu Hongwei Hou Yuan Lu 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第2期106-113,共8页
Background:Androgenic alopecia(AGA)is the most common type of hair loss in men,and there are many studies on the treatment of hair loss by platelet-rich plasma(PRP).The human scalp contains a huge microbiome,but its r... Background:Androgenic alopecia(AGA)is the most common type of hair loss in men,and there are many studies on the treatment of hair loss by platelet-rich plasma(PRP).The human scalp contains a huge microbiome,but its role in the process of hair loss remains unclear,and the relationship between PRP and the microbiome needs further study.Therefore,the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition.Methods:We performed PRP treatment on 14 patients with AGA,observed their clinical efficacy,and collected scalp swab samples before and after treatment.The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification.Results:The results showed that PRP was effective in the treatment of AGA patients,and the hair growth increased significantly.The results of relative abundance analysis of microbiota showed that after treatment,g_Cutibacterium increased and g_Staphylococcus decreased,which played a stable role in scalp microbiota.In addition,g_Lawsonella decreased,indicating that the scalp oil production decreased after treatment.Conclusions:The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing. 展开更多
关键词 androgenic alopecia MICROBIOME platelet-rich plasma SCALP
下载PDF
Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
6
作者 王敏 聂秋月 +2 位作者 黄韬 王晓钢 张彦杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期503-508,共6页
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLP... The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI. 展开更多
关键词 HIT-PSI heat flux linear plasma SOLPS-ITER device
下载PDF
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
7
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction AIRFOIL
下载PDF
Exercised blood plasma promotes hippocampal neurogenesis in the Alzheimer's disease rat brain
8
作者 Cecilie Skarstad Norevik Aleksi M.Huuha +10 位作者 Ragnhild N.RФsbjФrgen Linda Hildegard Bergersen Kamilla Jacobsen Rodrigo Miguel-dos-Santos Liv Ryan Belma Skender Jose Bianco N.Moreira Asgeir Kobro-Flatmoen Menno P.Witter Nathan Scrimgeour Atefe R.Tari 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期245-255,共11页
Background:Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer’s disease(AD).These beneficial effects may be partly mediated by blood-borne factors... Background:Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer’s disease(AD).These beneficial effects may be partly mediated by blood-borne factors.Here we used an in vitro model of AD to investigate effects of blood plasma from exercise-trained donors on neuronal viability,and an in vivo rat model of AD to test whether such plasma impacts cognitive function,amyloid pathology,and neurogenesis.Methods:Mouse hippocampal neuronal cells were exposed to AD-like stress using amyloid-βand treated with plasma collected from human male donors 3 h after a single bout of high-intensity exercise.For in vivo studies,blood was collected from exercise-trained young male Wistar rats(high-intensity intervals 5 days/week for 6 weeks).Transgenic AD rats(McGill-R-Thyl-APP)were inj ected 5 times/fortnight for 6 weeks at2 months or 5 months of age with either(a)plasma from the exercise-trained rats,(b)plasma from sedentary rats,or(c)saline.Cognitive function,amyloid plaque pathology,and neurogenesis were assessed.The plasma used for the treatment was analyzed for 23 cytokines.Results:Plasma from exercised donors enhanced cell viability by 44.1%(p=0.032)and reduced atrophy by 50.0%(p<0.001)in amyloid-β-treated cells.In vivo exercised plasma treatment did not alter cognitive function or amyloid plaque pathology but did increase hippocampal neurogenesis by~3 fold,regardless of pathological stage,when compared to saline-treated rats.Concentrations of 7 cytokines were significantly reduced in exercised plasma compared to sedentary plasma.Conclusion:Our proof-of-concept study demonstrates that plasma from exercise-trained donors can protect neuronal cells in culture and promote adult hippocampal neurogenesis in the AD rat brain.This effect may be partly due to reduced pro-inflammatory signaling molecules in exercised plasma. 展开更多
关键词 CYTOKINES High-intensity interval training Inflammation NEURONS plasma transfusion
下载PDF
Reveal the pharmacodynamic substances and mechanism of an edible medicinal plant Rhodiola crenulate in DSS-induced colitis through plasma pharmacochemistry and metabolomics
9
作者 Yu Peng Xiaoao Xiao +8 位作者 Tingting Ji Xinyuan Wang Yixuan Xu Jianbo Xiao Hui Cao Zhiyong Chen Huifan Liu Yuanqing Gao Hongxun Tao 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2116-2131,共16页
Rhodiola crenulate is the edible medicinal herbal medicine widely used for altitude sickness in China.Interestingly,our previous work has found that R.crenulate extract(RCE)could significantly improve the pathology as... Rhodiola crenulate is the edible medicinal herbal medicine widely used for altitude sickness in China.Interestingly,our previous work has found that R.crenulate extract(RCE)could significantly improve the pathology associated with dextran sulfate sodium-induced colitis.Thus,the current research aims to reveal the pharmacodynamic material basis of RCE,as well as its mechanism against colitis.The chemical characterization of RCE was performed by UHPLC-HR-MS,through which a total of 88 constituents were identified.Meanwhile,our results also found 29 constituents absorbed into blood and 8 metabolized absorbable compounds.The decreased flavonoids prototype and the elevated sulfated products of phenols were observed under pathophysiological conditions of colitis.The metabolomics study revealed that colitis caused the alternation of fatty acid metabolism,steroid hormone biosynthesis and bile acid metabolism.Correspondingly,RCE could prevent colitis by improving fatty acid metabolism and secondary bile acid metabolism. 展开更多
关键词 Rhodiola crenulate COLITIS Chemical characterization plasma pharmacochemistry Metabolomics
下载PDF
Plasma potential measurements using an emissive probe made of oxide cathode
10
作者 李建泉 马海杰 陆文琪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期571-577,共7页
A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparis... A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life.The properties of the novel emissive probe are investigated in detail,in comparison with a traditional tungsten emissive probe,including the operating temperature,the electron emission capability and the plasma potential measurement.Studies of the operating temperature and electron emission capability show that the tungsten emissive probe usually works at a temperature of 1800 K-2200 K while the oxide cathode emissive probe can function at about 1200 K-1400 K.In addition,plasma potential measurements using the oxide cathode emissive probe with different techniques have been accomplished in microwave electron cyclotron resonance plasmas with different discharge powers.It is found that a reliable plasma potential can be obtained using the improved inflection point method and the hot probe with zero emission limit method,while the floating point method is invalid for the oxide cathode emissive probe. 展开更多
关键词 emissive probe oxide cathode plasma potential filament temperature
下载PDF
Laser-induced plasma formation in water with up to 400 mJ double-pulse LIBS
11
作者 Marion HENKEL Michelle SIEMENS +4 位作者 Ralf METHLING Benjamin EMDE Jörg HERMSDORF Steffen FRANKE Diego GONZALEZ 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期93-100,共8页
Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission ... Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum. 展开更多
关键词 double-pulse LIBS UNDERWATER plasma formation emission spectrosocpy
下载PDF
Effect of ion stress on properties of magnetized plasma sheath
12
作者 陈龙 崔作君 +4 位作者 高维富 段萍 阚子晨 檀聪琦 陈俊宇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期1-12,共12页
In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the... In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the Braginskii plasma transport theory and establishes a 1D3V sheath fluid model that takes into account the ion stress effect. Under the assumption that ions undergo both electric and diamagnetic drift in the presheath region, self-consistent boundary conditions,including the ion Bohm velocity, are derived based on the property of the Sagdeev pseudopotential.Furthermore, assuming that the electron velocity at the wall follows a truncated Maxwell distribution, the wall floating potential is calculated, leading to a more accurate sheath thickness estimation. The results show that ion stress significantly reduces the sheath thickness, enhances ion Bohm velocity, wall floating potential, and ion flux at the wall. It hinders the acceleration of ions within the sheath, leading to notable alterations in the particle density profiles within the sheath. Further research indicates that in ion stress, bulk viscous stress has the greatest impact on sheath properties. 展开更多
关键词 magnetized plasma sheath ion stress Bohm criterion
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance
13
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Plasma nitrogen fixation system with dual-loop enhancement for improved energy efficiency and its efficacy for lettuce cultivation
14
作者 韩泽阳 张梦雪 +8 位作者 张頔 何欣 井天军 葛知轩 李玉鸽 朱童 任云鸿 仲崇山 季方 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期82-92,共11页
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ... Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables. 展开更多
关键词 plasma nitrogen fixation gliding arc soilless cultivation LETTUCE
下载PDF
A large-scale cold plasma jet: generation mechanism and application effect
15
作者 崔伟胜 张若兵 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期1-8,共8页
Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper,... Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors. 展开更多
关键词 diffuse plasma jet flow field electric field surface treatment
下载PDF
Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
16
作者 许慧敏 高敬格 +3 位作者 贾鹏英 冉俊霞 陈俊宇 李金懋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期539-544,共6页
Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often ope... Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often operates in a filamentary mode. Compared to the filamentary mode, the diffuse mode is more desirable for applications. Hence, many efforts have been exerted to accomplish the diffuse mode of the argon plasma jet. In this paper, a novel single-needle argon plasma jet is developed to obtain the diffuse mode. It is found that the plasma jet operates in the filamentary mode when the distance from the needle tip to the central line of the argon stream(d) is short. It transits to the diffuse mode with increasing d. For the diffuse mode, there is always one discharge pulse per voltage cycle, which initiates at the rising edge of the positive voltage. For comparison, the number of discharge pulse increases with an increase in the peak voltage for the filamentary mode. Fast photography reveals that the plasma plume in the filamentary mode results from a guided positive streamer,which propagates in the argon stream. However, the plume in the diffuse mode originates from a branched streamer, which propagates in the interfacial layer between the argon stream and the surrounding air. By optical emission spectroscopy,plasma parameters are investigated for the two discharge modes, which show a similar trend with increasing d. The diffuse mode has lower electron temperature, electron density, vibrational temperature, and gas temperature compared to the filamentary mode. 展开更多
关键词 plasma jet diffuse mode filamentary mode optical emission spectroscopy
下载PDF
The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery
17
作者 聂兰兰 刘大伟 +2 位作者 程鹤 赵峰 卢新培 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期9-26,共18页
Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, f... Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD. 展开更多
关键词 plasma transdermal drug delivery skin physical characteristics reactive agents
下载PDF
Performance of pulsed plasma thruster at low discharge energy
18
作者 李鸿俊 林泽豪 +3 位作者 胡浩俊 吴文东 陈爱虹 杜德扬 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期122-132,共11页
As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at ... As the size of satellites scales down, low-power and compact propulsion systems such as the pulsed plasma thruster(PPT) are needed for stabilizing these miniature satellites in orbit. Most PPT systems are operated at 2 J or more of discharge energy. In this work, the performance of a PPT with a side-fed, tongue-flared electrode configuration operated within a lower discharge energy range of 0.5-2.5 J has been investigated. Ablation and charring of the polytetrafluoroethylene propellant surface were analyzed through field-effect scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy. When the discharge energy fell below 2 J, inconsistencies occurred in the specific impulse and the thrust efficiency due to the measurement of the low mass bit. At energy ≥2 J, the performance parameters are compared with other PPT systems of similar configuration and discussed in depth. 展开更多
关键词 pulsed plasma thruster low discharge energy performance parameters
下载PDF
Characteristics of the electromagnetic wave propagation in magnetized plasma sheath and practical method for blackout mitigation
19
作者 吴翔 张珈珲 +1 位作者 董果香 石磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期489-499,共11页
“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circ... “Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circularly polarized wave in the magnetized plasma sheath.We assume a double Gaussian model of electron density and an exponential attenuation model of magnetic field.The propagation characteristics of right-handed circularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient.The numerical results show that the propagation of right-handed circularly polarized wave in the magnetized plasma sheath varies for different incident angles,collision frequencies,non-uniform magnetic fields and non-uniform plasma densities.We notice that reducing the wave frequency can meet the propagation conditions of whistle mode in the weak magnetized plasma sheath.And the transmittance of whistle mode is less affected by the variation of the electron density and the collision frequency.It can be used as a communication window. 展开更多
关键词 magnetized plasma sheath communication blackout finite element incident angle whistler wave
下载PDF
Fabrication of YAG:Ce^(3+) and YAG:Ce^(3+),Sc^(3+) Phosphors by Spark Plasma Sintering Technique
20
作者 周卫新 娄朝刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期255-260,共6页
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ... In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength. 展开更多
关键词 high-temperature solid-state reaction spark plasma sintering yttrium aluminum garnet PHOSPHORS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部