Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s f...The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.展开更多
Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the p...Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.展开更多
Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 x 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier...Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 x 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demon- strated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously.展开更多
In this work,we demonstrated high-power quantum cascade laser(QCL)arrays lasing at λ~5μm by employing an optimized coupled-ridge waveguide(CRW)structure.Five-element QCL arrays were simulated and fabricated through ...In this work,we demonstrated high-power quantum cascade laser(QCL)arrays lasing at λ~5μm by employing an optimized coupled-ridge waveguide(CRW)structure.Five-element QCL arrays were simulated and fabricated through a two-step etching method to extend the CRW structure to a mid-wave infrared regime.A lateral far-field with the main peak near a diffraction-limited intensity curve of about 10°was observed by properly designing a geometric shape of the ridges and interspaces.By introducing a buried 2nd-order distributed feedback(DFB)grating,substrate emission with a radiation power above 1 W at 25℃ is achieved.Single longitudinal mode operation is obtained by changing the temperature of the heatsink with a good linear wavelength tuning coefficient of -0.2 cm^(-1)/K.展开更多
According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unillumina...According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
The effect of channel-width chirping on near- and far-field intensity patterns of the six supermodes was investigated. The supermode discrimination was evaluated in various channel-chirped index guided laser arrays. T...The effect of channel-width chirping on near- and far-field intensity patterns of the six supermodes was investigated. The supermode discrimination was evaluated in various channel-chirped index guided laser arrays. The results show that the linearly channel-chirped laser array has very good supermode discrimination which is better than that of a uniform laser array, the V channel-chirped laser array has the smallest radiation angle of the fundamental supermode among the calculated arrays, and the asymmetrically V channel-chirped array has a very small radiation angle of the fundamental supermode, which is smaller than that of the uniform array and also allows for very good fundamental supermode discrimination against the higher-order supermodes, which is better than that of the V channel-chirped laser array.展开更多
Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimi...Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimized to achieve a uniform temperature distribution among the laser stripes and along the cavity direction. The temperature among the laser stripes varies by more than 5 K if the stripes are equally arranged, and can be reduced to less than 0.4 K if proper arrangement is designed. For conventional submount structure, the temperature variation along the cavity direction is as high as 7 K, while for an optimized trapezoid submount structure, the temperature varies only within 0.5 K.展开更多
An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow ...An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration. Taking advantage of the single-lobed fundamental supermode far-field pattern, the tuning capa- bility of 30.6cm-1 is achieved with a fixed injected current of 3.5 A at room temperature. Single-mode emission can be observed in the entire process. The maximum single-mode output power of the external cavity setup is as high as 25mW and is essential in real applications.展开更多
We report one thick layer of hard-baked photoresist mask.The laser array stripe pattern was defined by standard wet lithography.With this mask, a 10 W QCW(quasi-continuous wave) operation of a narrow proton implanted ...We report one thick layer of hard-baked photoresist mask.The laser array stripe pattern was defined by standard wet lithography.With this mask, a 10 W QCW(quasi-continuous wave) operation of a narrow proton implanted multiple stripe conventional single quantum well separate confinement heterostructure(SQW-SCH) GaAlAs diode laser array has been realized.These devices exhibit the lateral far-field radiation pattern of a phase-locked array of gain-guided semiconductor injection laser array.The twenty stripe laser array has a lateral far-field beam divergence full width at half maximum(FWHM) of less than 3°,and three twenty stripe laser array has a beam divergence in the plane of the junction of about 9°.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the externa...A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C 0). Considering the fact that|C 0/S| should be larger than unity if the external cavity is effective,and|C 1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.展开更多
An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic inte...An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.展开更多
This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure a...This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields.Through the utilization of high-speed electro-optic modulators in each individual fiber laser module,the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest.Furthermore,the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images.Through simulations and experiments,we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%.Given its potential for high emitting power and rapid modulation,the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.展开更多
Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LR...Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.展开更多
We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locke...We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locked by four phase controllers based on the stochastic parallel gradient descent(SPGD)algorithm,respectively.In this way,the phases of the whole array were locked,and the visibility of the interference pattern of the whole emitted laser array in the far field was∼93%.In addition,the technique has the advantage of element expanding and can be further used in the high-power coherent beam combination(CBC)system due to its compact spatial structure.展开更多
In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an...In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an optical combiner and additional power loss.A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth.Besides,the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase.We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB.The output power of all the channels is above 14 mW.The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers.A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels,and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation.The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing(WDM)systems,such as next-generation front-haul networks and passive optical networks.展开更多
We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correc...We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correcting static phase distortion using SA algorithm. The performance of SA algorithm under time-varying phase noise is numerically studied by dynamic simulation. It is revealed that the influence of phase noise on the performance of SA algorithm gets stronger with an increase in amplitude or frequency of phase noise; and the laser array that contains more lasers will be more affected from phase noise. The performance of SA algorithm for coherent beam combining is also compared with a widely used stochastic optimization algorithm, i.e., the stochastic parallel gradient descent (SPGD) algorithm. In a proof-of-concept experiment we demonstrate the coherent beam combining of two 1083~nm fibre amplifiers with a total output power of 12~W and 93% combining efficiency. The contrast of the far-field coherently combined beam profiles is calculated to be as high as 95%.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
文摘The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.
基金supported by the Innovation Foundation for Postgraduate of Hunan Province
文摘Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.
基金Project supported by the National High Technology Research and Pevelopment Program of China (Grant Nos. 2011AA010303 and 2012AA012203)the National Basic Research Program of China (Grant No. 2011CB301702)the National Natural Science Foundation of China (Grant Nos. 61021003 and 61090392)
文摘Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 x 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demon- strated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously.
基金supported by National Basic Research Program of China(Grant Nos.2018YFA0209103,2018YFB2200504)in part by National Natural Science Foundation of China(Grant Nos.61991430,61774146,61790583,61734006,61835011,61674144,61774150,61805168)+1 种基金in part by Beijing Municipal Science&Technology Commission(Grant No.Z201100004020006)in part by the Key projects of the Chinese Academy of Sciences(Grant No.2018147,Grant No.YJKYYQ20190002,Grant No.QYZDJ-SSW-JSC027,Grant No.XDB43000000,Grant No.ZDKYYQ20200006).
文摘In this work,we demonstrated high-power quantum cascade laser(QCL)arrays lasing at λ~5μm by employing an optimized coupled-ridge waveguide(CRW)structure.Five-element QCL arrays were simulated and fabricated through a two-step etching method to extend the CRW structure to a mid-wave infrared regime.A lateral far-field with the main peak near a diffraction-limited intensity curve of about 10°was observed by properly designing a geometric shape of the ridges and interspaces.By introducing a buried 2nd-order distributed feedback(DFB)grating,substrate emission with a radiation power above 1 W at 25℃ is achieved.Single longitudinal mode operation is obtained by changing the temperature of the heatsink with a good linear wavelength tuning coefficient of -0.2 cm^(-1)/K.
文摘According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
文摘The effect of channel-width chirping on near- and far-field intensity patterns of the six supermodes was investigated. The supermode discrimination was evaluated in various channel-chirped index guided laser arrays. The results show that the linearly channel-chirped laser array has very good supermode discrimination which is better than that of a uniform laser array, the V channel-chirped laser array has the smallest radiation angle of the fundamental supermode among the calculated arrays, and the asymmetrically V channel-chirped array has a very small radiation angle of the fundamental supermode, which is smaller than that of the uniform array and also allows for very good fundamental supermode discrimination against the higher-order supermodes, which is better than that of the V channel-chirped laser array.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0402002,2016YFB0401803,2017YFB0405002,2017YFB0405003,and 2017YFB0405005)the National Natural Science Foundation of China(Grant Nos.61574160,61704184,and 61334005)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Science(Grant No.XDA09020401)the Chinese Academy of Science Visiting Professorship for Senior International Scientists(Grant No.2013T2J0048)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20170430)the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows,China(Grant No.2016LH0026)
文摘Thermal characteristics of multiple laser stripes integrated into one chip is investigated theoretically in this paper. The temperature pattern of the laser diode mini-array packaged in a TO-can is analyzed and optimized to achieve a uniform temperature distribution among the laser stripes and along the cavity direction. The temperature among the laser stripes varies by more than 5 K if the stripes are equally arranged, and can be reduced to less than 0.4 K if proper arrangement is designed. For conventional submount structure, the temperature variation along the cavity direction is as high as 7 K, while for an optimized trapezoid submount structure, the temperature varies only within 0.5 K.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program of China under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos 61435014,61627822,61574136,61306058 and 61404131the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration. Taking advantage of the single-lobed fundamental supermode far-field pattern, the tuning capa- bility of 30.6cm-1 is achieved with a fixed injected current of 3.5 A at room temperature. Single-mode emission can be observed in the entire process. The maximum single-mode output power of the external cavity setup is as high as 25mW and is essential in real applications.
文摘We report one thick layer of hard-baked photoresist mask.The laser array stripe pattern was defined by standard wet lithography.With this mask, a 10 W QCW(quasi-continuous wave) operation of a narrow proton implanted multiple stripe conventional single quantum well separate confinement heterostructure(SQW-SCH) GaAlAs diode laser array has been realized.These devices exhibit the lateral far-field radiation pattern of a phase-locked array of gain-guided semiconductor injection laser array.The twenty stripe laser array has a lateral far-field beam divergence full width at half maximum(FWHM) of less than 3°,and three twenty stripe laser array has a beam divergence in the plane of the junction of about 9°.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
文摘A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C 0). Considering the fact that|C 0/S| should be larger than unity if the external cavity is effective,and|C 1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0704402,2018YFB2201801,2018YFE0201200,and 2020YFB2205800)National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.
文摘This paper presents an efficient scheme for single-pixel imaging(SPI)utilizing a phase-controlled fiber laser array and an untrained deep neural network.The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields.Through the utilization of high-speed electro-optic modulators in each individual fiber laser module,the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest.Furthermore,the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images.Through simulations and experiments,we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%.Given its potential for high emitting power and rapid modulation,the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.
基金supported by the BDS and the National Natural Science Foundation of China(Grant No.11503068,U1631240)Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.06DZ2101)+2 种基金CAS Key Technology Talent ProgramNatural science fund of Shanghai(20ZR1467500)the Key Research Program of the Chinese Academy of Sciences(ZDRW-KT-2019-3-6)。
文摘Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.
基金supported by the National Natural Science Foundation of China(Nos.62275272 and 62075242)the Natural Science Foundation of Hunan Province,China(No.2019JJ10005)+1 种基金the Training Program for Excellent Young Innovators of Changsha(No.kq2206003)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20220013).
文摘We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locked by four phase controllers based on the stochastic parallel gradient descent(SPGD)algorithm,respectively.In this way,the phases of the whole array were locked,and the visibility of the interference pattern of the whole emitted laser array in the far field was∼93%.In addition,the technique has the advantage of element expanding and can be further used in the high-power coherent beam combination(CBC)system due to its compact spatial structure.
基金supported in part by the Chinese National Key Basic Research Special Fund(Nos.2017YFA0206401,2018YFA0704402,2018YFE0201200,and 2018YFB2201801)National Natural Science Foundation of China(Nos.62004094 and 61975075)+2 种基金Natural Science Foundation of Jiangsu Province of China(No.BK20200334)Jiangsu Science and Technology Project(Nos.BE2019101 and BE2017003-2)Suzhou Technological Innovation of Key Industries(No.SYG201844).
文摘In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an optical combiner and additional power loss.A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth.Besides,the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase.We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB.The output power of all the channels is above 14 mW.The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers.A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels,and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation.The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing(WDM)systems,such as next-generation front-haul networks and passive optical networks.
文摘We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correcting static phase distortion using SA algorithm. The performance of SA algorithm under time-varying phase noise is numerically studied by dynamic simulation. It is revealed that the influence of phase noise on the performance of SA algorithm gets stronger with an increase in amplitude or frequency of phase noise; and the laser array that contains more lasers will be more affected from phase noise. The performance of SA algorithm for coherent beam combining is also compared with a widely used stochastic optimization algorithm, i.e., the stochastic parallel gradient descent (SPGD) algorithm. In a proof-of-concept experiment we demonstrate the coherent beam combining of two 1083~nm fibre amplifiers with a total output power of 12~W and 93% combining efficiency. The contrast of the far-field coherently combined beam profiles is calculated to be as high as 95%.