Aim: The study was to fabricate FA nanopowder/Co-Cr-Mo dental alloy nanocomposite using pulsed laser deposition (PLD), and to evaluate bioactivity properties on simulated body fluid. Methods: In this work, the FA nano...Aim: The study was to fabricate FA nanopowder/Co-Cr-Mo dental alloy nanocomposite using pulsed laser deposition (PLD), and to evaluate bioactivity properties on simulated body fluid. Methods: In this work, the FA nanopowder was prepared by mixing calcium hydroxide (Ca(OH)2), phosphorouspent oxide (P2O5) and calcium fluoride (CaF2) in a planetary high energy ball mill using zirconium vial. Fluorapatite (FA) nanopowder was processed in the form of pellet for pulsed laser deposition process. The Co-Cr-Mo alloy was coated with FA nanopowder which was approximately 35 - 65 nm at various laser energy, pressure and time. The X-ray diffraction (XRD) was used to analyze phase, crystallinity and size distribution of Co-Cr-Mo/FA nanocomposite. The surface analysis was by scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and Energy dispersive spectroscopy (EDS). Results: From the results obtained, It was shown that FA nanopowder deposited on Co-Cr-Mo alloy was stable during 14 days of incubation on simulated body fluid. It was also observed that the FA nanopowder coated on the surface of the alloy was still intact after the deposition process, which indicated the bioactivity and biocompatibility of the material. Conclusions: The fabrication of FA nanocomposite based dental alloys (Co-Cr-Mo) using PLD was done successfully. This was confirmed by various characterization techniques, which included XRD, AFM, SEM and EDS.展开更多
采用体内急性全身性毒性实验、溶血实验、MTT实验(Tetrazolium basedcolorimetricassay)和材料浸渍液培养细胞的形态学观察法实验对含铈钛合金的生物安全性进行了初步的评价。用X射线光电子能谱仪XPS分析了合金表面氧化膜成分,并用原子...采用体内急性全身性毒性实验、溶血实验、MTT实验(Tetrazolium basedcolorimetricassay)和材料浸渍液培养细胞的形态学观察法实验对含铈钛合金的生物安全性进行了初步的评价。用X射线光电子能谱仪XPS分析了合金表面氧化膜成分,并用原子发射光谱仪ICP检测了浸渍液中合金元素的种类和浓度。结果显示:含铈和不含铈的Ti Fe Mo Mn Nb Zr系合金表面均形成了以TiO2为主的致密氧化膜,浸渍液中均存在浓度为0.2~0.27mg·L-1的Fe和0.16~0.87mg·L-1的Mn,这种义齿材料有利于补充人体所需的Fe和Mn;两者均未见任何急性毒性反应;溶血程度为0.558%~0.67%,有良好的血液相容性;细胞毒性实验评价级别为0和1级,无明显的细胞毒性作用;倒置相差显微镜观察细胞形态,未发现异常。由以上结果可以初步认为在实验浓度范围内的铈生物安全性是能够保证的。展开更多
文摘Aim: The study was to fabricate FA nanopowder/Co-Cr-Mo dental alloy nanocomposite using pulsed laser deposition (PLD), and to evaluate bioactivity properties on simulated body fluid. Methods: In this work, the FA nanopowder was prepared by mixing calcium hydroxide (Ca(OH)2), phosphorouspent oxide (P2O5) and calcium fluoride (CaF2) in a planetary high energy ball mill using zirconium vial. Fluorapatite (FA) nanopowder was processed in the form of pellet for pulsed laser deposition process. The Co-Cr-Mo alloy was coated with FA nanopowder which was approximately 35 - 65 nm at various laser energy, pressure and time. The X-ray diffraction (XRD) was used to analyze phase, crystallinity and size distribution of Co-Cr-Mo/FA nanocomposite. The surface analysis was by scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and Energy dispersive spectroscopy (EDS). Results: From the results obtained, It was shown that FA nanopowder deposited on Co-Cr-Mo alloy was stable during 14 days of incubation on simulated body fluid. It was also observed that the FA nanopowder coated on the surface of the alloy was still intact after the deposition process, which indicated the bioactivity and biocompatibility of the material. Conclusions: The fabrication of FA nanocomposite based dental alloys (Co-Cr-Mo) using PLD was done successfully. This was confirmed by various characterization techniques, which included XRD, AFM, SEM and EDS.
文摘采用体内急性全身性毒性实验、溶血实验、MTT实验(Tetrazolium basedcolorimetricassay)和材料浸渍液培养细胞的形态学观察法实验对含铈钛合金的生物安全性进行了初步的评价。用X射线光电子能谱仪XPS分析了合金表面氧化膜成分,并用原子发射光谱仪ICP检测了浸渍液中合金元素的种类和浓度。结果显示:含铈和不含铈的Ti Fe Mo Mn Nb Zr系合金表面均形成了以TiO2为主的致密氧化膜,浸渍液中均存在浓度为0.2~0.27mg·L-1的Fe和0.16~0.87mg·L-1的Mn,这种义齿材料有利于补充人体所需的Fe和Mn;两者均未见任何急性毒性反应;溶血程度为0.558%~0.67%,有良好的血液相容性;细胞毒性实验评价级别为0和1级,无明显的细胞毒性作用;倒置相差显微镜观察细胞形态,未发现异常。由以上结果可以初步认为在实验浓度范围内的铈生物安全性是能够保证的。