期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Parallelization of an Implicit Algorithm for Multi-Dimensional Particle-in-Cell Simulations
1
作者 George M.Petrov Jack Davis 《Communications in Computational Physics》 SCIE 2014年第8期599-611,共13页
The implicit 2D3V particle-in-cell(PIC)code developed to study the interaction of ultrashort pulse lasers with matter[G.M.Petrov and J.Davis,Computer Phys.Comm.179,868(2008);Phys.Plasmas 18,073102(2011)]has been paral... The implicit 2D3V particle-in-cell(PIC)code developed to study the interaction of ultrashort pulse lasers with matter[G.M.Petrov and J.Davis,Computer Phys.Comm.179,868(2008);Phys.Plasmas 18,073102(2011)]has been parallelized using MPI(Message Passing Interface).The parallelization strategy is optimized for a small number of computer cores,up to about 64.Details on the algorithm implementation are given with emphasis on code optimization by overlapping computations with communications.Performance evaluation for 1D domain decomposition has been made on a small Linux cluster with 64 computer cores for two typical regimes of PIC operation:”particle dominated”,for which the bulk of the computation time is spent on pushing particles,and”field dominated”,for which computing the fields is prevalent.For a small number of computer cores,less than 32,the MPI implementation offers a significant numerical speed-up.In the”particle dominated”regime it is close to the maximum theoretical one,while in the”field dominated”regime it is about 75-80%of the maximum speed-up.For a number of cores exceeding 32,performance degradation takes place as a result of the adopted 1D domain decomposition.The code parallelization will allow future implementation of atomic physics and extension to three dimensions. 展开更多
关键词 PARTICLE-IN-CELL Maxwell equations MPI lasertarget interaction.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部