[Objective]The paper was to study the relationship between rice leaf roller,rice planthopper and spider and their ecological regulation ability in the field.[Method]The population dynamics of rice leaf roller,rice pla...[Objective]The paper was to study the relationship between rice leaf roller,rice planthopper and spider and their ecological regulation ability in the field.[Method]The population dynamics of rice leaf roller,rice planthopper and spider at three different sowing and transplanting periods of single cropping hybrid rice in the treatment area with combination of 3 drug formulations and untreated area were monitored.[Result]There were significant or extremely significant positive correlations among rice leaf roller,rice planthopper and spider in single cropping hybrid rice.However,with the delay of planting and transplanting period,the population fluctuation crest of rice leaf roller and rice planthopper decreased,but the intensity increased with the advance of time,and the natural ecological regulation ability was relatively improved.[Conclusion]The sowing period of single cropping hybrid rice is delayed 5-10 d compared with conventional rice,that is,sowing in late May and early June.The seedling age of 20-30 d is beneficial not only to reduce the initial population quantity of rice leaf roller and rice planthopper in the field,but also to increase the population quantity of spiders.展开更多
To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habigan...To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield.展开更多
Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha...Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha, were used as materials to study the dry matter production characteristics. The super hybrid rice showed a high ability in dry matter production and accumulation and its yield enhanced with the increase of dry matter accumulation. The advantage period of dry matter production in the super hybrid rice was mainly at the middle and late growth stages compared with the check. The grain yield had no significant correlation with the dry matter accumulation before the elongation stage while had a significantly positive correlation with the dry matter accumulation from the elongation to maturity stages in super hybrid rice. There were more dry matter in vegetative organs at the heading stage in the super hybrid rice but its contribution to yield (apparent conversion percentage) was averagely 4.3 percent points lower than that in the check. For crop growth rate (CGR), the comparative advantage of super hybrid rice was at the middle and late stages, especially after flowering. Moreover, as the rising of leaf area index (LAI) and leaf area duration (LAD), CGR enhanced. The total LAD and the mean of lAD per day of super hybrid rice was about 14.79% and 10.31% higher than those of the check, respectively. The results indicate that the high yield of super hybrid rice mostly comes from the products of photosynthesis after heading, which is shown by the increased CGR at middle and later stages. It is suggested that LAD character might be used to better explain the advantage in the dry matter production of super hybrid rice than LAI.展开更多
Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annu...Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annual rice production will have to increase 70 percent over the next 30 years, to keep up with the demends of the growing population.展开更多
本研究旨在明确传统双季晚籼稻地区双季杂交晚粳稻超高产产量构成及其群体特征,阐明双季杂交晚粳稻超高产形成规律。以江西省上高县6.77 hm2连片双季杂交晚粳稻高产攻关示范方为依托,选用杂交粳稻甬优8号为材料,对中产(8.25~9.75 t hm...本研究旨在明确传统双季晚籼稻地区双季杂交晚粳稻超高产产量构成及其群体特征,阐明双季杂交晚粳稻超高产形成规律。以江西省上高县6.77 hm2连片双季杂交晚粳稻高产攻关示范方为依托,选用杂交粳稻甬优8号为材料,对中产(8.25~9.75 t hm–2)、高产(9.75~10.50 t hm–2)和超高产(>10.50 t hm–2)3个产量水平群体的产量构成及群体特征进行系统比较研究。结果表明,与中产、高产水平群体相比,超高产水平群体表现穗数足、穗型大、群体颖花量多(50 000×104 hm-2以上)的显著特点,但结实率和千粒重略低,差异不显著;群体茎蘖动态上,群体起点较高,可及时够苗;够苗后增长平缓,高峰苗数量较少、下降平缓,成穗率高(78.0%左右)。群体叶面积指数前期增长较缓,最大值出现在孕穗期,为8.0左右,此后下降缓慢,成熟期仍保持3.5以上;群体光合势生育前期较小,中、后期较大,抽穗至成熟期光合势为300×104 m2 d hm-2以上,总光合势为560×104 m2 d hm-2以上。拔节前干物质量积累速度较慢,拔节后积累速度较快,至抽穗期群体干物质量为10.5 t hm-2左右,抽穗后积累量亦高,成熟期干物质量达19.0 t hm-2左右,后期茎鞘物质转运率大于14.0%。超高产群体根量多、活力较强;植株吸氮能力强、成熟期氮素累积量高,氮素利用率40%以上。根据双季杂交晚粳稻超高产形成特征,我们探讨了培育双季晚粳稻超高产群体的关键栽培技术。展开更多
基金Supported by Science and Technology Project of Taizhou City(14NY14)Key Research and De-velopment Program of Zhejiang Province(2016C02050-3-4)
文摘[Objective]The paper was to study the relationship between rice leaf roller,rice planthopper and spider and their ecological regulation ability in the field.[Method]The population dynamics of rice leaf roller,rice planthopper and spider at three different sowing and transplanting periods of single cropping hybrid rice in the treatment area with combination of 3 drug formulations and untreated area were monitored.[Result]There were significant or extremely significant positive correlations among rice leaf roller,rice planthopper and spider in single cropping hybrid rice.However,with the delay of planting and transplanting period,the population fluctuation crest of rice leaf roller and rice planthopper decreased,but the intensity increased with the advance of time,and the natural ecological regulation ability was relatively improved.[Conclusion]The sowing period of single cropping hybrid rice is delayed 5-10 d compared with conventional rice,that is,sowing in late May and early June.The seedling age of 20-30 d is beneficial not only to reduce the initial population quantity of rice leaf roller and rice planthopper in the field,but also to increase the population quantity of spiders.
基金supported by the National Basic Research Program of China (2009CB118603)the Green Super Rice (GSR) Project from the International Rice Research Institute (IRRI) for South Asia+1 种基金Project was completed through the generous cooperation of Hunan Agricultural University, Changsha, Hunan, Chinathe Bangladesh Rice Research Institute (BRRI)
文摘To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield.
基金the State Science and Technology Program of Grain Harvests in China (Grant Nos. 2006BAD02A06 and 2006BAD02A04)
文摘Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha, were used as materials to study the dry matter production characteristics. The super hybrid rice showed a high ability in dry matter production and accumulation and its yield enhanced with the increase of dry matter accumulation. The advantage period of dry matter production in the super hybrid rice was mainly at the middle and late growth stages compared with the check. The grain yield had no significant correlation with the dry matter accumulation before the elongation stage while had a significantly positive correlation with the dry matter accumulation from the elongation to maturity stages in super hybrid rice. There were more dry matter in vegetative organs at the heading stage in the super hybrid rice but its contribution to yield (apparent conversion percentage) was averagely 4.3 percent points lower than that in the check. For crop growth rate (CGR), the comparative advantage of super hybrid rice was at the middle and late stages, especially after flowering. Moreover, as the rising of leaf area index (LAI) and leaf area duration (LAD), CGR enhanced. The total LAD and the mean of lAD per day of super hybrid rice was about 14.79% and 10.31% higher than those of the check, respectively. The results indicate that the high yield of super hybrid rice mostly comes from the products of photosynthesis after heading, which is shown by the increased CGR at middle and later stages. It is suggested that LAD character might be used to better explain the advantage in the dry matter production of super hybrid rice than LAI.
基金The study was supported by Hi-tech Research and Development Project of China (No. 2004AA211142), National Natural Science Foundation of China (No. 30270819). The development of source materials used in the study was supported by the Rockefeller Foundation.
文摘Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annual rice production will have to increase 70 percent over the next 30 years, to keep up with the demends of the growing population.
文摘本研究旨在明确传统双季晚籼稻地区双季杂交晚粳稻超高产产量构成及其群体特征,阐明双季杂交晚粳稻超高产形成规律。以江西省上高县6.77 hm2连片双季杂交晚粳稻高产攻关示范方为依托,选用杂交粳稻甬优8号为材料,对中产(8.25~9.75 t hm–2)、高产(9.75~10.50 t hm–2)和超高产(>10.50 t hm–2)3个产量水平群体的产量构成及群体特征进行系统比较研究。结果表明,与中产、高产水平群体相比,超高产水平群体表现穗数足、穗型大、群体颖花量多(50 000×104 hm-2以上)的显著特点,但结实率和千粒重略低,差异不显著;群体茎蘖动态上,群体起点较高,可及时够苗;够苗后增长平缓,高峰苗数量较少、下降平缓,成穗率高(78.0%左右)。群体叶面积指数前期增长较缓,最大值出现在孕穗期,为8.0左右,此后下降缓慢,成熟期仍保持3.5以上;群体光合势生育前期较小,中、后期较大,抽穗至成熟期光合势为300×104 m2 d hm-2以上,总光合势为560×104 m2 d hm-2以上。拔节前干物质量积累速度较慢,拔节后积累速度较快,至抽穗期群体干物质量为10.5 t hm-2左右,抽穗后积累量亦高,成熟期干物质量达19.0 t hm-2左右,后期茎鞘物质转运率大于14.0%。超高产群体根量多、活力较强;植株吸氮能力强、成熟期氮素累积量高,氮素利用率40%以上。根据双季杂交晚粳稻超高产形成特征,我们探讨了培育双季晚粳稻超高产群体的关键栽培技术。