期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stacked lateral double-diffused metal–oxide–semiconductor field effect transistor with enhanced depletion effect by surface substrate
1
作者 Qi Li Zhao-Yang Zhang +3 位作者 Hai-Ou Li Tang-You Sun Yong-He Chen Yuan Zuo 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期328-332,共5页
A stacked lateral double-diffused metal–oxide–semiconductor field-effect transistor(LDMOS) with enhanced depletion effect by surface substrate is proposed(ST-LDMOS), which is compatible with the traditional CMOS pro... A stacked lateral double-diffused metal–oxide–semiconductor field-effect transistor(LDMOS) with enhanced depletion effect by surface substrate is proposed(ST-LDMOS), which is compatible with the traditional CMOS processes. The new stacked structure is characterized by double substrates and surface dielectric trenches(SDT). The drift region is separated by the P-buried layer to form two vertically parallel devices. The doping concentration of the drift region is increased benefiting from the enhanced auxiliary depletion effect of the double substrates, leading to a lower specific on-resistance(Ron,sp). Multiple electric field peaks appear at the corners of the SDT, which improves the lateral electric field distribution and the breakdown voltage(BV). Compared to a conventional LDMOS(C-LDMOS), the BV in the ST-LDMOS increases from 259 V to 459 V, an improvement of 77.22%. The Ron,sp decreases from 39.62 m?·cm^2 to 23.24 m?·cm^2 and the Baliga's figure of merit(FOM) of is 9.07 MW/cm^2. 展开更多
关键词 double substrates SURFACE dielectric trench stacked lateral double-diffused metal–oxide– SEMICONDUCTOR field-effect transistor(ST-LDMOS) breakdown voltage
下载PDF
Analysis of trigger behavior of high voltage LDMOS under TLP and VFTLP stress
2
作者 祝靖 钱钦松 +1 位作者 孙伟锋 刘斯扬 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第1期30-33,共4页
The physical mechanisms triggering electrostatic discharge (ESD) in high voltage LDMOS power transistors (〉 160 V) under transmission line pulsing (TLP) and very fast transmission line pulsing (VFTLP) stress ... The physical mechanisms triggering electrostatic discharge (ESD) in high voltage LDMOS power transistors (〉 160 V) under transmission line pulsing (TLP) and very fast transmission line pulsing (VFTLP) stress are investigated by TCAD simulations using a set of macroscopic physical models related to previous studies implemented in Sentaurus Device. Under VFTLP stress, it is observed that the triggering voltage of the high voltage LDMOS obviously increases, which is a unique phenomenon compared with the low voltage ESD protection devices like NMOS and SCR. The relationship between the triggering voltage increase and the parasitic capacitances is also analyzed in detail. A compact equivalent circuit schematic is presented according to the investigated phenomena. An improved structure to alleviate this effect is also proposed and confirmed by the experiments. 展开更多
关键词 electrostatic discharge transmission line pulsing very fast transmission line pulsing lateral double-diffused metal-oxide-semiconductor transistor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部