A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is ...A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is adopted to alleviate the channel-length modulation effect and to improve the saturated I-V characteristics. An anode field plate is induced to achieve a high breakdown voltage VB of the CRD. The influence of the key device parameters on the I-V characteristics of the lateral CRD are discussed. Experimental results show that the proposed CRD presents good I-V characteristics with a high VB about 180 V and a low knee voltage (Vk) below 3 V. Furthermore, the proposed CRD has a negative temperature coefficient. The well characteristic of the proposed CRD makes it a cost-effective solution for light-emitting-diode lighting.展开更多
To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-deg...To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61376080
文摘A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is adopted to alleviate the channel-length modulation effect and to improve the saturated I-V characteristics. An anode field plate is induced to achieve a high breakdown voltage VB of the CRD. The influence of the key device parameters on the I-V characteristics of the lateral CRD are discussed. Experimental results show that the proposed CRD presents good I-V characteristics with a high VB about 180 V and a low knee voltage (Vk) below 3 V. Furthermore, the proposed CRD has a negative temperature coefficient. The well characteristic of the proposed CRD makes it a cost-effective solution for light-emitting-diode lighting.
基金supported by the Program for Changjiang ScholarsInnovative Research Team in University,China(No.IRT0626)
文摘To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves.