An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a...An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a lateral shift is observed. The densely packed superstructure can be attributed to the substrate commensuration and the intermolecular van der Waals attractive interaction. The in-plane lateral shift in the superphase is specifically along the direction of [110] azimuth. The results provide a new perspective to understanding the intermolecular and the molecule-substrate interactions.展开更多
The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident e...The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.展开更多
The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we ob...The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60506019,10674118,and 10774129)the Chinese Universities Scientific Fund
文摘An investigation on the growth behavior of FePc on a Ag (110) surface is carried out by using scanning tunneling microscopy (STM). At an FePc coverage of 3.5 ML, an ordered superstructure (densely packed) with a lateral shift is observed. The densely packed superstructure can be attributed to the substrate commensuration and the intermolecular van der Waals attractive interaction. The in-plane lateral shift in the superphase is specifically along the direction of [110] azimuth. The results provide a new perspective to understanding the intermolecular and the molecule-substrate interactions.
基金Supported by the National Natural Science Foundation of China!( 6 9870 0 9)by the Science Foundation of Shanghai Municipal
文摘The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning (Grant No. PHR201107145)
文摘The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.