We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings...We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.展开更多
We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside t...We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field.Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB.Moreover,a single chip integrating three LC-DFB lasers was tentatively explored.The three LC-DFB lasers on the chip can operate in single mode at room temperature,covering the wavelength span of 35.6 nm.展开更多
成功制备出室温激射波长为2μm的Ga Sb基侧向耦合分布反馈量子阱激光器.采用全息曝光及电感耦合等离子体刻蚀技术制备二阶布拉格光栅.优化了光栅制备的刻蚀条件,并获得室温2μm单纵模激射.激光器输出光功率超过5 m W,最大边模抑制比达到...成功制备出室温激射波长为2μm的Ga Sb基侧向耦合分布反馈量子阱激光器.采用全息曝光及电感耦合等离子体刻蚀技术制备二阶布拉格光栅.优化了光栅制备的刻蚀条件,并获得室温2μm单纵模激射.激光器输出光功率超过5 m W,最大边模抑制比达到24 d B.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB643903 and 2013CB932904)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+1 种基金the National Natural Science Foundation of China(Grant Nos.61435012,61274013,61306088,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)
文摘We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.
基金supported by the National Key Research and Development Program of China(No.2021YFB2800500).
文摘We report the InAs/GaAs quantum dot laterally coupled distributed feedback(LC-DFB)lasers operating at room temperature in the wavelength range of 1.31μm.First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field.Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB.Moreover,a single chip integrating three LC-DFB lasers was tentatively explored.The three LC-DFB lasers on the chip can operate in single mode at room temperature,covering the wavelength span of 35.6 nm.