A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore ma...A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.展开更多
A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)...A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.展开更多
As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts s...As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.展开更多
Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which...Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.展开更多
The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reac...The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reaction activity of nickel ores is effectively improved by pre-roasting at650°C for2h,because of the transformation of lizardite into magnesium olivine and protoenstatite.When finely ground ore samples(44-61μm)pre-roasted firstly react with sodium hydroxide solution(60g/L)with a solid/liquid ratio of1:5at140°C for120min,the extraction of silicon can reach89.89%,and the other valuable elements of magnesium,iron and nickel are accumulated in the solid residues.The leaching kinetics of nickel laterite ore can be described successfully by the diffusion through the product layer control model.The activation energy is calculated to be11.63kJ/mol and the kinetics equation can be expressed as1-3(1-x)2/3+2(1-x)=13.53×10-2exp[-11.63/(RT)]t.展开更多
An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and...An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.展开更多
The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,...The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.展开更多
A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and N...A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and NaOH-to-ore mass ratio,was investigated.The results show that increasing stirring speed,reaction temperature and NaOH-to-ore mass ratio while decreasing particle size increases silicon extraction rate.The desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system was described successfully by chemical reaction control model.The activation energy of the desiliconization process was found to be 44.01 kJ/mol,and the reaction rate based on a chemical reaction-controlled process can be expressed as:1-(1-α) 1/3 = 27.67exp[-44 010/(RT)]t.展开更多
Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigat...Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigated. Characterization results of X-ray diffraction (XRD) and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) show that goethite is the major Ni-bearing mineral, and chromite is the minor one. Experimental results show that the leaching rates of Cr, Al, and Si are 95.6wt%, 83.8wt%, and 40.1wt%, respectively, under the optimal alkali-roasting conditions. Compared with the direct pressure acid leaching of laterite ores, the leaching rates of Ni and Co increase from 80.1wt% to 96.9wt% and 70.2wt% to 95.1wt% after pretreatment, respectively. Meanwhile, the grade of acid leaching iron residues increases from 54.4wt% to 62.5wt%, and these residues with low Cr content are more suitable raw materials for iron making.展开更多
This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron...This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.展开更多
Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resourc...Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resource,the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation.Alkaline metal salts were usually added to enhance reduction of laterite ores.The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated.Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered.By adding 35wt%red mud,the nickel grade and recovery were 4.90wt%and 95.25wt%,and the corresponding iron grade and total recovery were 71.00wt%and 93.77wt%,respectively.The X-ray diffraction(XRD),scanning electron microscopy,and energy dispersive spectroscopy(SEM-EDS)analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth.The chemical compositions"Ca O and Na_2O"in the red mud replaced Fe O to react with Si O_2 and Mg Si O_3 to form augite.展开更多
A novel process was proposed for recovering nickel from nickeliferous laterite ores.First of all,silicon and magnesium were removed from lateritic ore by high concentration sodium hydroxide leaching and carbonation re...A novel process was proposed for recovering nickel from nickeliferous laterite ores.First of all,silicon and magnesium were removed from lateritic ore by high concentration sodium hydroxide leaching and carbonation respectively,so as to enrich nickel. Then the method of ammonia carbonate leaching was adopted to recover nickel from the carbonized slag,and the remaining residue was used as a raw material for recovering iron.The effects of temperature,ammonia carbonate concentration,liquid/solid ratio and stirring speed on the recovery of nickel were examined.When the leached residue reacted with ammonia carbonate(6 mol·L- 1)in a ratio of liquid-to-solid of 5-1 at 60℃for 150 min at the stirring speed of 300 r·min- 1,approximate more than 95%nickel was recovered.During the whole process,there was no contamination produced and the chemical raw materials were recycled,thus the process was a green technology that having good social benefit.展开更多
The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantit...The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.展开更多
The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetic...The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetics of the reaction.The results show that with increasing stirring speed,liquid-to-solid ratio and reaction time,and decreasing temperature,the leaching rate of magnesium enhances.The leaching process of the desiliconization slag in the range of 288-298 K is controlled by the surface chemical reaction model.The apparent activation energy is-20.45 kJ/mol,and the kinetics model is obtained.展开更多
The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nick...The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nickel was conducted in hot water at the atmospheric pressure.The effects of factors,such as microwave power,microwave irradiation time,and sulfuric acid dosage, were investigated.In microwave field,the migration of ionic species and/or rotation of dipolar species promote the liquid?solid reaction process due to the increased contact area of reactants and leaching reaction rate constant.Thanks to the strengthening action of microwave,the microwave-assisted leaching process has its advantages,such as higher extracting rate than conventional atmospheric leaching,and no need for high-pressure operation as high pressure acid leaching(HPAL).The ferric iron in leaching solution could be effectively removed by sodium jarosite process with a little loss of nickel in the jarosite precipitate.展开更多
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effec...A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the ob- tained Co304 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and ana- lyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4particles with a diameter of 30 rim, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
A two-stage leaching process,namely,highpressure acid leaching-atmospheric acid leaching,was used to treat laterite ores under mild conditions.The leaching ratio of Ni was low because of adsorption and incomplete leac...A two-stage leaching process,namely,highpressure acid leaching-atmospheric acid leaching,was used to treat laterite ores under mild conditions.The leaching ratio of Ni was low because of adsorption and incomplete leaching.In this work,surfactants were used as additives to boost the leaching ratio of Ni.The effect of surfactant type(cationic,anionic,and nonionic surfactants)on the leaching ratio of Ni was investigated.Leaching results showed that stearyl trimethyl ammonium chloride(STAC)apparently increased the leaching ratios of valuable metals.The variation in the physicochemical properties of the lixiviant and the residue improved the leaching ratio of Ni in the presence of STAC.Kinetics analysis indicated that the leaching process was controlled by chemical reaction.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis o...Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.展开更多
基金Project(51125018)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(51204153)supported by the National Natural Science Foundation of ChinaProject(2011BAC06B07)supported by the National High Technology Research and Development Program,China
文摘A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.
基金Project(51134002)supported by the National Natural Science Foundation of ChinaProject(2012BAB14B02)supported by the Ministry of Science and Technology of ChinaProject(12120113086600)supported by Ministry of Land and Resources of China
文摘A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.
基金Project(2012CB722805)supported by the National Basic Research Program of China
文摘As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.
基金Project(50674014) supported by the National Natural Science Foundation of China
文摘Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.
基金Project(2014CB643405) supported by the National Basic Research Program of ChinaProjects(51204036,51234009) supported by the National Natural Science Foundation of ChinaProject(BJ201604) supported by the Program for Top Young Talents of Higher Education Institutions of Hebei Province,China
文摘The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated.The results indicate that the reaction activity of nickel ores is effectively improved by pre-roasting at650°C for2h,because of the transformation of lizardite into magnesium olivine and protoenstatite.When finely ground ore samples(44-61μm)pre-roasted firstly react with sodium hydroxide solution(60g/L)with a solid/liquid ratio of1:5at140°C for120min,the extraction of silicon can reach89.89%,and the other valuable elements of magnesium,iron and nickel are accumulated in the solid residues.The leaching kinetics of nickel laterite ore can be described successfully by the diffusion through the product layer control model.The activation energy is calculated to be11.63kJ/mol and the kinetics equation can be expressed as1-3(1-x)2/3+2(1-x)=13.53×10-2exp[-11.63/(RT)]t.
基金Project(2182040)supported by the Beijing Natural Science Foundation,ChinaProjects(51674026,51974025,U1802253)supported by the National Natural Science Foundation of ChinaProject(FRF-TT-19-001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.
文摘The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and NaOH-to-ore mass ratio,was investigated.The results show that increasing stirring speed,reaction temperature and NaOH-to-ore mass ratio while decreasing particle size increases silicon extraction rate.The desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system was described successfully by chemical reaction control model.The activation energy of the desiliconization process was found to be 44.01 kJ/mol,and the reaction rate based on a chemical reaction-controlled process can be expressed as:1-(1-α) 1/3 = 27.67exp[-44 010/(RT)]t.
基金supported by the National Key Technology R&D Program (No.2011BAC06B07)
文摘Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigated. Characterization results of X-ray diffraction (XRD) and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) show that goethite is the major Ni-bearing mineral, and chromite is the minor one. Experimental results show that the leaching rates of Cr, Al, and Si are 95.6wt%, 83.8wt%, and 40.1wt%, respectively, under the optimal alkali-roasting conditions. Compared with the direct pressure acid leaching of laterite ores, the leaching rates of Ni and Co increase from 80.1wt% to 96.9wt% and 70.2wt% to 95.1wt% after pretreatment, respectively. Meanwhile, the grade of acid leaching iron residues increases from 54.4wt% to 62.5wt%, and these residues with low Cr content are more suitable raw materials for iron making.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474018 and 51674018)
文摘This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.
基金financially supported by the National Natural Science Foundation of China (Nos.51474018 and 51674018)
文摘Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resource,the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation.Alkaline metal salts were usually added to enhance reduction of laterite ores.The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated.Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered.By adding 35wt%red mud,the nickel grade and recovery were 4.90wt%and 95.25wt%,and the corresponding iron grade and total recovery were 71.00wt%and 93.77wt%,respectively.The X-ray diffraction(XRD),scanning electron microscopy,and energy dispersive spectroscopy(SEM-EDS)analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth.The chemical compositions"Ca O and Na_2O"in the red mud replaced Fe O to react with Si O_2 and Mg Si O_3 to form augite.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel process was proposed for recovering nickel from nickeliferous laterite ores.First of all,silicon and magnesium were removed from lateritic ore by high concentration sodium hydroxide leaching and carbonation respectively,so as to enrich nickel. Then the method of ammonia carbonate leaching was adopted to recover nickel from the carbonized slag,and the remaining residue was used as a raw material for recovering iron.The effects of temperature,ammonia carbonate concentration,liquid/solid ratio and stirring speed on the recovery of nickel were examined.When the leached residue reacted with ammonia carbonate(6 mol·L- 1)in a ratio of liquid-to-solid of 5-1 at 60℃for 150 min at the stirring speed of 300 r·min- 1,approximate more than 95%nickel was recovered.During the whole process,there was no contamination produced and the chemical raw materials were recycled,thus the process was a green technology that having good social benefit.
基金financially supported by the National Natural Science Foundation of China(Nos.U1302274 and 51274044)
文摘The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘The leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process was studied.The influence of various parameters was investigated to optimize the conditions and determine the kinetics of the reaction.The results show that with increasing stirring speed,liquid-to-solid ratio and reaction time,and decreasing temperature,the leaching rate of magnesium enhances.The leaching process of the desiliconization slag in the range of 288-298 K is controlled by the surface chemical reaction model.The apparent activation energy is-20.45 kJ/mol,and the kinetics model is obtained.
基金Project(50774020)supported by the National Natural Science Foundation of China
文摘The application of microwave technique in the hydrometallurgy of nickel laterite ores was described.The mixture of nickel laterite ores and sulfuric acid was pre-treated by microwave irradiation.The dissolving of nickel was conducted in hot water at the atmospheric pressure.The effects of factors,such as microwave power,microwave irradiation time,and sulfuric acid dosage, were investigated.In microwave field,the migration of ionic species and/or rotation of dipolar species promote the liquid?solid reaction process due to the increased contact area of reactants and leaching reaction rate constant.Thanks to the strengthening action of microwave,the microwave-assisted leaching process has its advantages,such as higher extracting rate than conventional atmospheric leaching,and no need for high-pressure operation as high pressure acid leaching(HPAL).The ferric iron in leaching solution could be effectively removed by sodium jarosite process with a little loss of nickel in the jarosite precipitate.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(No.51125018)the National Key Technologies R&D Program(2011BAC06B07)+2 种基金the Key Research Program of the Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(No.51204153)the Program of Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments(No.YCXT201610)
文摘A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the ob- tained Co304 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and ana- lyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4particles with a diameter of 30 rim, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
基金financially supported by the National Natural Science Foundation of China(Grant No.51704175)the Fundamental Research Funds of Shandong University(Grant No.2016GN011).
文摘A two-stage leaching process,namely,highpressure acid leaching-atmospheric acid leaching,was used to treat laterite ores under mild conditions.The leaching ratio of Ni was low because of adsorption and incomplete leaching.In this work,surfactants were used as additives to boost the leaching ratio of Ni.The effect of surfactant type(cationic,anionic,and nonionic surfactants)on the leaching ratio of Ni was investigated.Leaching results showed that stearyl trimethyl ammonium chloride(STAC)apparently increased the leaching ratios of valuable metals.The variation in the physicochemical properties of the lixiviant and the residue improved the leaching ratio of Ni in the presence of STAC.Kinetics analysis indicated that the leaching process was controlled by chemical reaction.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金Project(2019M653082)supported by the China Postdoctoral Science FoundationProject(BGRIMM-KJSKL-2020-02)supported by the Found of State Key Laboratory of Mineral Processing,China。
文摘Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.