Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this specie...Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.展开更多
基金Supported by the National Natural Science Foundation (No. 30530080)the Ministry of Science and Technology of China (Nos. 2007AA09Z402, 2007AA09Z403)the Department of Science and Technology of Shandong Province (No. 2006GG2205023)
文摘Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.