期刊文献+
共找到1,606篇文章
< 1 2 81 >
每页显示 20 50 100
A combined method using Lattice Boltzmann Method(LBM)and Finite Volume Method(FVM)to simulate geothermal reservoirs in Enhanced Geothermal System(EGS)
1
作者 Xiang Gao Tai-lu Li +2 位作者 Yu-wen Qiao Yao Zhang Ze-yu Wang 《Journal of Groundwater Science and Engineering》 2024年第2期132-146,共15页
With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium... With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations. 展开更多
关键词 lattice boltzmann method Finite volume method Enhanced geothermal system Geothermal reservoir PROPPANT Re Heat extraction rate
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
2
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) lattice boltzmann method(lbm)
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
3
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice boltzmann method(Vlbm) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method
4
作者 杨帆 金虎 戴梦瑶 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期434-443,共10页
The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state... The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state. The calculation results indicate that the motion of the droplet on the cylinder can be divided into three stages: spreading, sliding, and aggregating.The contact length and contact time of a droplet on a cylindrical surface can be affected by factors such as the wettability gradient of the cylindrical wall, the Bond number, and droplet size. Furthermore, phase diagrams showing the relationship between Bond number, cylinder wall wettability gradient, and contact time as well as maximum contact length for three different droplet sizes are given. A theoretical foundation for additional research into the heat and mass transfer process between the droplet and the cylinder can be established by comprehending the variable rules of maximum contact length and contact time. 展开更多
关键词 lattice boltzmann methods DROPLET circular cylinder wettability gradient
下载PDF
A High-Accuracy Curve Boundary Recognition Method Based on the Lattice Boltzmann Method and Immersed Moving Boundary Method
5
作者 Jie-Di Weng Yong-Zheng Jiang +2 位作者 Long-Chao Chen Xu Zhang Guan-Yong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2533-2557,共25页
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti... Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering. 展开更多
关键词 Fluid-solid interaction curve boundary recognition method lattice boltzmann method immersed moving boundary method
下载PDF
Data-driven optimization study of the multi-relaxation-time lattice Boltzmann method for solid-liquid phase change 被引量:1
6
作者 Yanlin REN Zhaomiao LIU +1 位作者 Zixiao KANG Yan PANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期159-172,共14页
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical per... Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy. 展开更多
关键词 solid-liquid phase change lattice boltzmann method(lbm) relaxation parameter random forest(RF) support vector machine(SVM)
下载PDF
Exploration of the coupled lattice Boltzmann model based on a multiphase field model:A study of the solid-liquid-gas interaction mechanism in the solidification process
7
作者 朱昶胜 王利军 +2 位作者 高梓豪 刘硕 李广召 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期638-648,共11页
A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubb... A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth. 展开更多
关键词 multiphase field model lattice boltzmann model(lbm) Shan-Chen multiphase flow solidification organization
下载PDF
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
8
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice boltzmann method
下载PDF
A joint absorbing boundary for the multiple-relaxation-time lattice Boltzmann method in seismic acoustic wavefield modeling 被引量:1
9
作者 Chun-Tao Jiang Hui Zhou +2 位作者 Mu-Ming Xia Han-Ming Chen Jin-Xuan Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2113-2126,共14页
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel... Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology. 展开更多
关键词 Multiple-relaxation-time lattice boltzmann method Seismic acoustic wavefield simulation Truncated Boundary reflection Joint absorbing boundary
下载PDF
Application of shifted lattice model to 3D compressible lattice Boltzmann method
10
作者 黄好雨 金科 +1 位作者 李凯 郑晓静 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期312-320,共9页
An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D... An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model. 展开更多
关键词 lattice boltzmann method shifted lattice model compressible flow finite volume method
下载PDF
Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
11
作者 冯凯 杨刚 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期527-536,共10页
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su... A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel. 展开更多
关键词 two-phase flow lattice boltzmann method pressure drop flow-focusing microchannel
下载PDF
A rescaling algorithm for multi-relaxation-time lattice Boltzmann method towards turbulent flows with complex configurations
12
作者 Haoyang LI Weijian LIU Yuhong DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1597-1612,共16页
Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows... Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed.The mesh layout and the detailed rescaling procedure are also introduced.Direct numerical simulations(DNSs)for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity(D3Q19)multiple-relaxation-time(MRT)lattice Boltzmann method(LBM)to validate the accuracy,adaptability,and computational performance of the present rescaling algorithm.The results,which are consistent with the previous DNS studies based on the finite difference method and the LBM,demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries.The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency. 展开更多
关键词 slattice boltzmann method(lbm) direct numerical simulation(DNS) rescaling algorithm complex configuration
下载PDF
Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM) 被引量:9
13
作者 M.SHEIKHOLESLAMI M.GORJI-BANDPY G.DOMAIRRY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期833-846,共14页
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa... The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers. 展开更多
关键词 lattice boltzmann method lbm NANOFLUID natural convection concentric annular cavity
下载PDF
FLOW FIELD ANALYSES OF PLANE JET AT LOW REYNOLDS NUMBERS USING LATTICE BOLTZMANN METHOD 被引量:5
14
作者 赵立清 孙建红 许常悦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期199-206,共8页
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu... A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region. 展开更多
关键词 plane jet low Reynolds number lattice boltzmann method
下载PDF
NOVEL IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD BASED ON FEEDBACK LAW 被引量:1
15
作者 李秀娟 赵荣国 钟诚文 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期179-186,共8页
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)... The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism. 展开更多
关键词 computational fluid dynamics lattice boltzmann method immersed boundary method feedback law circular cylinder
下载PDF
基于LBM的泡沫金属与翅片相变储能系统性能对比分析 被引量:1
16
作者 张金亚 周文博 程紫漪漪 《储能科学与技术》 CAS CSCD 北大核心 2024年第2期598-607,共10页
为了研究翅片和泡沫金属铜对相变储能系统性能的影响,使用四参数随机生长法(QSGS)构建了孔隙密度(PPI)分别为20PPI、30PPI的泡沫铜复合相变材料模型,并构建了等铜质量的翅片相变材料模型。在此基础上,采用格子玻尔兹曼(LBM)数值模拟方... 为了研究翅片和泡沫金属铜对相变储能系统性能的影响,使用四参数随机生长法(QSGS)构建了孔隙密度(PPI)分别为20PPI、30PPI的泡沫铜复合相变材料模型,并构建了等铜质量的翅片相变材料模型。在此基础上,采用格子玻尔兹曼(LBM)数值模拟方法对相变材料(PCM)的储/放热过程进行了数值模拟,基于努塞尔数、液相率、PCM流动速度、PCM熔化/凝固时间对比分析了添加翅片以及添加泡沫金属结构对相变材料换热性能的影响。结果表明,在储热过程中,由于泡沫金属的存在会抑制熔化过程中对流换热的发展,双翅片结构的努塞尔数高于泡沫金属结构,熔化时间更短,相比于20PPI、30PPI泡沫铜复合相变材料分别缩短了28.55%、17.5%;在放热过程中,泡沫金属的存在会增加热传导面积,泡沫金属结构的凝固速度高于翅片结构,30PPI泡沫金属结构的凝固时间相比于翅片、20PPI泡沫铜复合相变材料分别缩短了65.80%、20.24%。综合考虑储放热两个过程,30PPI泡沫金属结构的总储放热时间最短,相比于翅片、20PPI泡沫铜复合相变材料分别缩短了27.81%、15.32%。在耗费相同金属材料的条件下,采用泡沫结构是更为有效的提升储能效率的手段。 展开更多
关键词 格子玻尔兹曼 四参数随机生长法 翅片 泡沫金属 相变储能系统
下载PDF
COMPRESSIBLE FLOW SIMULATION AROUND AIRFOIL BASED ON LATTICE BOLTZMANN METHOD
17
作者 钟诚文 李凯 +2 位作者 孙建红 卓从山 解建飞 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期206-211,共6页
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ... The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence. 展开更多
关键词 compressible flow computational fluid dynamics lattice boltzmann method AIRFOIL body-fitted grid
下载PDF
Zakharov-Rubenchik方程组的格子Boltzmann方法
18
作者 宋艺 戴厚平 《湖南城市学院学报(自然科学版)》 CAS 2024年第4期73-78,共6页
Zakharov-Rubenchik方程组常用于描述非线性介质中高、低频波间相互作用的波耦合现象。本文针对该方程组的数值求解问题,构建了一种格子Boltzmann方法的D1Q3演化模型,并利用Chapman-Enskog展开和多尺度分析技术,推导出了各个方向的平衡... Zakharov-Rubenchik方程组常用于描述非线性介质中高、低频波间相互作用的波耦合现象。本文针对该方程组的数值求解问题,构建了一种格子Boltzmann方法的D1Q3演化模型,并利用Chapman-Enskog展开和多尺度分析技术,推导出了各个方向的平衡态分布函数和修正函数的具体表达式,从而将所建的演化模型准确恢复到宏观方程组。最后,通过数值算例证明了该方法的有效性。 展开更多
关键词 一维Zakharov-Rubenchik方程组 格子boltzmann方法 数值求解 非线性偏微分方程
下载PDF
PF-LBM耦合模型下Al-Cu合金的枝晶生长和气泡形成
19
作者 朱昶胜 雷瑶 +2 位作者 雷鹏 高梓豪 赵博睿 《兰州理工大学学报》 CAS 北大核心 2024年第1期19-26,共8页
基于Shan-Chen多相流的格子玻尔兹曼方法模拟复杂多相流系统,探索气泡在液相中的生长和运动.研究了Al-4.0wt.%Cu合金在凝固过程中枝晶与气泡的相互作用,各向异性对凝固组织的影响以及枝晶与气泡共存时溶液密度的变化情况.结果表明:在定... 基于Shan-Chen多相流的格子玻尔兹曼方法模拟复杂多相流系统,探索气泡在液相中的生长和运动.研究了Al-4.0wt.%Cu合金在凝固过程中枝晶与气泡的相互作用,各向异性对凝固组织的影响以及枝晶与气泡共存时溶液密度的变化情况.结果表明:在定向凝固枝晶生长模型中,气泡先在枝晶底部析出,压差导致气泡上升,流动的过程中会与枝晶产生相互作用且会出现气泡合并与消失的情况,在枝晶间密集通道处大气泡会变成蠕虫形状.模拟区域的高长比会影响枝晶和气泡的生长情况,当高长比较小时更容易产生短而小的气泡,高长比较大时更容易产生蠕虫状气泡.在等轴枝晶生长模型中,气泡在枝晶间析出,随着枝晶的生长,气泡同样会发生合并与消失的情况,并且在受到挤压时发生形变. 展开更多
关键词 相场模拟 格子玻尔兹曼方法 气泡 Al-4.0wt.%Cu合金
下载PDF
基于神威加速计算架构的LBM多级并行计算
20
作者 王鑫 张祖雨 《计算机系统应用》 2024年第8期60-67,共8页
格子玻尔兹曼方法(lattice Boltzmann method,LBM)是一种基于分子运动理论计算流体力学(computational fluid dynamics,CFD)的方法,提高LBM的并行计算能力是高性能计算领域的一项重要的研究内容.本文基于SW26010Pro处理器,通过区域分解... 格子玻尔兹曼方法(lattice Boltzmann method,LBM)是一种基于分子运动理论计算流体力学(computational fluid dynamics,CFD)的方法,提高LBM的并行计算能力是高性能计算领域的一项重要的研究内容.本文基于SW26010Pro处理器,通过区域分解、数据重构、双缓冲、向量化等优化方法,实现了LBM的多级并行.基于以上优化方案,测试了5600万网格规模,实现结果显示,相比于MPI进行级并行,碰撞过程的平均加速倍数达到61.737、迁移过程的平均加速倍数达到17.3,同时对方腔流案例做了强扩展测试,网格规模为1200×1200×1200,以6.2万计算核心为基准,百万核心的并行效率超过60.5%. 展开更多
关键词 格子玻尔兹曼方法 计算流体力学 数值模拟 高性能计算 神威加速计算架构
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部