On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effe...Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effects has the hyper- bolic type. For the two-parameter family of periodic waves in the film flow on a vertical wall the modulation equations for nonlinear wave trains are derived and investigated. The stability criterium for roll waves based on the hyperbolicity of the modulation equations is suggested. It is shown that the evolution of stable roll waves can be described by self-similar solutions of the modulation equations.展开更多
With the relentless densification of interconnected circuitry dictated by Moore’ s Law,the CMP manufacture of such delicate wafers requires the significant reduction of polishing pressure of integrated circuits,not o...With the relentless densification of interconnected circuitry dictated by Moore’ s Law,the CMP manufacture of such delicate wafers requires the significant reduction of polishing pressure of integrated circuits,not only globally,but also locally on every tip of the pad asperities.Conventional diamond disks used for dressing the polyurethane pads cannot produce asperities to achieve such uniformity.A new design of diamond disk was fabricated by casting diamond film on a silicon wafer that contains patterned etching pits. This silicon mold was subsequently removed by dissolution in a hydroxide solution.The diamond film followed the profile of the etching pits on silicon to form pyramids of identical in size and shape.The variation of their tip heights was in microns of single digit that was about one order of magnitude smaller than conventional diamond disks for CMP production.Moreover,the diamond film contained no metal that might contaminate the circuits on polished wafer during a CMP operation.The continuous diamond film could resist any corrosive attack by slurry of acid or base.Consequently,in-situ dressing during CMP is possible that may improve wafer uniformity and production throughput.This ideal diamond disk(IDD) is designed for the future manufacture of advanced semiconductor chips with node sizes of 32 nm or smaller.展开更多
We consider a continuum model for the evolution of an epitaxially-strained dislocation-free anisotropic thin solid film on isotropic deformable substrate in the absence of vapor deposition. By using a thin film approx...We consider a continuum model for the evolution of an epitaxially-strained dislocation-free anisotropic thin solid film on isotropic deformable substrate in the absence of vapor deposition. By using a thin film approximation we derived a nonlinear evolution equation. We examined the nonlinear evolution equation and found that there is a critical film thickness below which every film thickness is stable and a critical wave number above which every film thickness is stable.展开更多
Cadmium Cobalt Sulphide (CdxCo1-xS) thin film was deposited on microscopic glass substrate using chemical bath deposition technique at room temperature from aqueous solutions of Cadmium Chloride, Cobalt Chloride and T...Cadmium Cobalt Sulphide (CdxCo1-xS) thin film was deposited on microscopic glass substrate using chemical bath deposition technique at room temperature from aqueous solutions of Cadmium Chloride, Cobalt Chloride and Thiourea in which ammonium solution was used as complexing agents. The optical properties were characterized using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200 - 1000 nm. We report the deposition and optimization of the growth parameter with respect to time which showed that the band gap energy and the composition verified from the extended Vegard’s law are highly dependent on deposition time. The average transmittance of the film in VIS-NIR region ranges between 30% and 78% with absorbance range of 0.15 - 0.47 within the same wavelength range. The film was also observed to exhibit poor reflectance (11 x = 0.75;0.83 and 0.94), respectively. Other optical and dielectric properties of the films were also characterized. Based on the exhibited properties of the film, it can be concluded that it is a promising material for selective coatings for solar cells;effective coatings for poultry houses;use as antireflective coating materials, and for fabrication of optoelectronic devices.展开更多
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
文摘Waves of finite amplitude on a thin layer of non-Newtonian fluid modelled as a power-law fluid are considered. In the long wave approximation, the system of equations taking into account the viscous and nonlinear effects has the hyper- bolic type. For the two-parameter family of periodic waves in the film flow on a vertical wall the modulation equations for nonlinear wave trains are derived and investigated. The stability criterium for roll waves based on the hyperbolicity of the modulation equations is suggested. It is shown that the evolution of stable roll waves can be described by self-similar solutions of the modulation equations.
文摘With the relentless densification of interconnected circuitry dictated by Moore’ s Law,the CMP manufacture of such delicate wafers requires the significant reduction of polishing pressure of integrated circuits,not only globally,but also locally on every tip of the pad asperities.Conventional diamond disks used for dressing the polyurethane pads cannot produce asperities to achieve such uniformity.A new design of diamond disk was fabricated by casting diamond film on a silicon wafer that contains patterned etching pits. This silicon mold was subsequently removed by dissolution in a hydroxide solution.The diamond film followed the profile of the etching pits on silicon to form pyramids of identical in size and shape.The variation of their tip heights was in microns of single digit that was about one order of magnitude smaller than conventional diamond disks for CMP production.Moreover,the diamond film contained no metal that might contaminate the circuits on polished wafer during a CMP operation.The continuous diamond film could resist any corrosive attack by slurry of acid or base.Consequently,in-situ dressing during CMP is possible that may improve wafer uniformity and production throughput.This ideal diamond disk(IDD) is designed for the future manufacture of advanced semiconductor chips with node sizes of 32 nm or smaller.
文摘We consider a continuum model for the evolution of an epitaxially-strained dislocation-free anisotropic thin solid film on isotropic deformable substrate in the absence of vapor deposition. By using a thin film approximation we derived a nonlinear evolution equation. We examined the nonlinear evolution equation and found that there is a critical film thickness below which every film thickness is stable and a critical wave number above which every film thickness is stable.
文摘Cadmium Cobalt Sulphide (CdxCo1-xS) thin film was deposited on microscopic glass substrate using chemical bath deposition technique at room temperature from aqueous solutions of Cadmium Chloride, Cobalt Chloride and Thiourea in which ammonium solution was used as complexing agents. The optical properties were characterized using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200 - 1000 nm. We report the deposition and optimization of the growth parameter with respect to time which showed that the band gap energy and the composition verified from the extended Vegard’s law are highly dependent on deposition time. The average transmittance of the film in VIS-NIR region ranges between 30% and 78% with absorbance range of 0.15 - 0.47 within the same wavelength range. The film was also observed to exhibit poor reflectance (11 x = 0.75;0.83 and 0.94), respectively. Other optical and dielectric properties of the films were also characterized. Based on the exhibited properties of the film, it can be concluded that it is a promising material for selective coatings for solar cells;effective coatings for poultry houses;use as antireflective coating materials, and for fabrication of optoelectronic devices.