The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defin...The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defined assumption of a-priori-ness of knowledge. For realizing this aim, the following work has been done: 1) a two-valued algebraic system of formal axiology has been defined precisely and applied to proper-philosophy of physics, namely, to an almost unknown (not-recognized) formal-axiological aspect of the physical law of conservation of energy;2) the formal axiomatic epistemology-and-axiology theory Sigma has been defined precisely and applied to proper-physics for realizing the above-indicated purpose. Thus, a discrete mathematical model of relationship between philosophy of physics and universal epistemology united with formal axiology has been constructed. Results: 1) By accurate computing relevant compositions of evaluation-functions within the discrete mathematical model, it is demonstrated that a formal-axiological analog of the great conservation law of proper physics is a formal-axiological law of two-valued algebra of metaphysics. (A precise algorithmic definition of the unhabitual (not-well-known) notion “formal-axiological law of algebra of metaphysics” is given.) 2) The hitherto never published significantly new nontrivial scientific result of investigation presented in this article is a formal logical inference of the law of conservation of energy within the formal axiomatic theory Sigma from conjunction of the formal-axiological analog of the law of conservation of energy and the assumption of a-priori-ness of knowledge.展开更多
Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as...Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as C-D inequalities are pointed out, and finally new and more general conservation laws of energy and corresponding balance equations of energy as well as C-D inequalities in local and nonlocal asymmetric continua are presented.展开更多
Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D...Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D inequalities are pointed out. Some remarks on existing results are made, and new conservation laws of energy and related C-D inequalities are presented.展开更多
Lie symmetry and Mei conservation law of continuum Lagrange system are studied in this paper. The equation of motion of continuum system is established by using variational principle of continuous coordinates. The inv...Lie symmetry and Mei conservation law of continuum Lagrange system are studied in this paper. The equation of motion of continuum system is established by using variational principle of continuous coordinates. The invariance of the equation of motion under an infinitesimal transformation group is determined to be Lie-symmetric. The condition of obtaining Mei conservation theorem from Lie symmetry is also presented. An example is discussed for applications of the results.展开更多
Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incr...Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.展开更多
By introducing the generalized quasi-symmetry of the infinitesimaltransformation for transformation group G_r, this paper studies theconservation laws and symmetries of dynamical systems with unilateralconstraints in ...By introducing the generalized quasi-symmetry of the infinitesimaltransformation for transformation group G_r, this paper studies theconservation laws and symmetries of dynamical systems with unilateralconstraints in phase space. Noether's theorem and Noether's inversetheorem for me- chanical system with unilateral constraints in phasespace are obtained and two kinds of equivalent forms of generalizedKilling equations which are used to determine the generators of theinfinitesimal group transformation are given.展开更多
In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-...The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-Fermi equation is solved self-consistently in the cases of (a) semi-infinite planes of jellium (i.e. smeared uniform positive ions) and (b) a semi-infinite cylinder of finite radius, cleaved by a plane perpendicular to its axis. In (a), the elastic region has the form F(z)=Az ∝ Zrs-11/2, where rs is the mean interelectronic distance in the jellium model. Size effects are then considered, with possible relevance to atomic force microscopy.Defect energies are treated, using both electron theory and pair force laws.展开更多
Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellul...Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). This review provides a critical overview of the recent methods of bio- and chemo-mechanical processes for production of nanocellulose, their energy requirements and their functional properties. More than a dozen of pilot plants/commercial plants are under operation mostly in the developed countries, trying to exploit the potential of nanocellulose as reinforcing agent in paper, films, concrete, rubber, polymer films and so on. The utilization of nanocellulose is restricted mainly due to initial investment involved, high production cost and lack of toxicological information. This review focuses on the current trend and exploration of energy efficient and environment-friendly mechanical methods using pretreatments (both chemical and biological), their feasibility in scaling up and the future scope for expansion of nanocellulose application in diverse fields without impacting the environment. In addition, a nanocellulose quality index is derived to act as a guide for application based screening of nanocellulose production protocols.展开更多
The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetr...The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetry, Lie symmetry and Mei symmetry of the system are given. Two types of new conservation laws, called the Hojman conservation law and the Mei conservation law respectively, are obtained, and the intrinsic relations among the symmetries and the new conservation laws are researched. At the end of the paper, an example is given to illustrate the application of the results.展开更多
This paper shows that energy of 105 ton of oil can be obtained from space by fs (fermtosecond) eletromagnetic pulse technique in one second and one cm3 without any loss. This paper shows that the energy conservation l...This paper shows that energy of 105 ton of oil can be obtained from space by fs (fermtosecond) eletromagnetic pulse technique in one second and one cm3 without any loss. This paper shows that the energy conservation law and Fermi golden rule should be negatived in some cases. The negation of Fermi golden rule has important influences on many fields based on quantum mechanics. For example, the present knowledge on the charge distribution in atomic nucleus might be wrong completely. This paper emphasizes that the proposition on introducing the concept of the energy support ability in space will cause a series of unimaginable discoveries, and, therefore is of epoch-making significance. This paper gives indirect experimental verifications for the necessity of introducing the concept of energy support ability in space, and suggests a very simple experiment to show directly that the energy conservation law and Fermi golden rule should be negatived in some cases.展开更多
It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This ...It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This is so because any macroscopic body—lo-cated in a high-energy quantum state—is in practice forced to change this state to a state having a lower energy. The rate of the energy decrease is usually extremely small which makes its effect uneasy to detect in course of the observations, or experiments. The energy of the harmonic oscillator is thoroughly examined as an example. Here our point is that not only the energy, but also the oscillator amplitude which depends on energy, are changing with time. In result, no constant positions of the turning points of the oscillator can be specified;consequently the well-known variational procedure concerning the calculation of the action function and its properties cannot be applied.展开更多
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe...To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.展开更多
In this paper, we present a new method to construct the conservation laws for relativistic mechanical systems by finding corresponding integrating factors. First, the Lagrange equations of relativistic mechanical syst...In this paper, we present a new method to construct the conservation laws for relativistic mechanical systems by finding corresponding integrating factors. First, the Lagrange equations of relativistic mechanical systems are established, and the definition of integrating factors of the systems is given; second, the necessary conditions for the existence of conserved quantities of the relativistic mechanical systems are studied in detail, and the relation between the conservation laws and the integrating factors of the systems is obtained and the generalized Killing equations for the determination of the integrating factors are given; finally, the conservation theorem and its inverse for the systems are established, and an example is given to illustrate the application of the results.展开更多
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar co...Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.展开更多
The fidelity scheme of physical conservation laws has been applied in the dynamic framework of a global spectral model. In this study, a set of diabatic physical processes are also involved. Based on six 30-day numeri...The fidelity scheme of physical conservation laws has been applied in the dynamic framework of a global spectral model. In this study, a set of diabatic physical processes are also involved. Based on six 30-day numerical integrations of real-time data, we show that the full model is able to reproduce the primary features of global energy cycle and hydrological distribution. Additionally, the root-mean-square error is dramatically decreased when diabatic processes are considered. Another advantage is that the false structure of "double Intertropical Convergence Zone (ITCZ)" is not seen in the result, although the orecioitation rate becomes lower.展开更多
The purpose is to reestablish rather complete surface conservation laws for micropolar thermomechanical continua from the translation and the rotation invariances of the general balance law. The generalized energy-mom...The purpose is to reestablish rather complete surface conservation laws for micropolar thermomechanical continua from the translation and the rotation invariances of the general balance law. The generalized energy-momentum and energy-moment of momentum tensors are presented. The concrete forms of surface conservation laws for micropolar thermomechanical continua are derived . The existing related results are naturally derived as special cases from the results proposed in this paper . The incomplete degrees of the existing surface conservation laws are clearly seen from the process of the deduction. The surface conservation laws for nonlocal micropolar thermomechanical continua may be easily obtained via localization .展开更多
Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples t...Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.展开更多
The energy conservation law is applied to formulate the ductile and brittle creep fracture criterion for metallic materials. The criterion contains a summary of heat and latent energies. Assuming that the heat energy ...The energy conservation law is applied to formulate the ductile and brittle creep fracture criterion for metallic materials. The criterion contains a summary of heat and latent energies. Assuming that the heat energy is given out so it has no effect on the fracture process, the ductile creep fracture criterion is simplified. To take into account the evaluation of the damage state of materials the compressibility condition is introduced and the brittle creep fracture law is formulated.展开更多
The world’s growing energy demand poses a serious problem. At the same time fossil fuels are finite, which we must work against. Therefore, the Federal Government of Germany has set itself the goal to push forward th...The world’s growing energy demand poses a serious problem. At the same time fossil fuels are finite, which we must work against. Therefore, the Federal Government of Germany has set itself the goal to push forward the use of renewable energy in order to completely do without the generation of nuclear energy by 2023. There are, however, no specific guidelines from the European Directive on the promotion of electricity from renewable energy sources for the internal electricity market regarding how high each share of the different production method should be and, above all, which specific aim should be achieved by the share of wind energy. Nevertheless, it presents a crucial step toward a nuclear phaseout and a concomitant change of course of the Federal Government of Germany in the spring of 2011 regarding the expansion of renewable energy, taking the nuclear catastrophe in Fukushima into account. Using new legal planning approaches, also including the area of Rhineland-Palatinate, opportunities should be provided to make previously protected land available for setting up facilities for the generation of renewable energy. However, it is important to examine the legal situation regarding the installation of these kinds of constructions more detailed, as no general statements can be made. This will be illustrated using the example of the landscape conservation area “Eulenkopf and surrounding area” in the district of Kaiserslautern. The stated goal of the Social Democrat/Green coalition of the federal state government of Rhineland-Palatinate is to considerably expand the generation of electricity from renewable energy sources so that by 2030 at least the entire electricity demand can be covered by those. Due to the enormous potential of wind power, it is therefore necessary to quintuple its share of electricity generation by 2020, compared to 2011 numbers. In order to achieve the desired political objectives, by 2030 the number of turbines has to be increased to around 2650, representing a capacity of 7500 MW. This increase gives reason for boundary conditions to manage the generation of wind energy to be adjusted. This is intended to facilitate management and simultaneously minimise negative effects, such as the “sprawling” of wind turbines.展开更多
文摘The research purpose is invention (construction) of a formal logical inference of the Law of Conservation of Energy within a logically formalized axiomatic epistemology-and-axiology theory Sigma from a precisely defined assumption of a-priori-ness of knowledge. For realizing this aim, the following work has been done: 1) a two-valued algebraic system of formal axiology has been defined precisely and applied to proper-philosophy of physics, namely, to an almost unknown (not-recognized) formal-axiological aspect of the physical law of conservation of energy;2) the formal axiomatic epistemology-and-axiology theory Sigma has been defined precisely and applied to proper-physics for realizing the above-indicated purpose. Thus, a discrete mathematical model of relationship between philosophy of physics and universal epistemology united with formal axiology has been constructed. Results: 1) By accurate computing relevant compositions of evaluation-functions within the discrete mathematical model, it is demonstrated that a formal-axiological analog of the great conservation law of proper physics is a formal-axiological law of two-valued algebra of metaphysics. (A precise algorithmic definition of the unhabitual (not-well-known) notion “formal-axiological law of algebra of metaphysics” is given.) 2) The hitherto never published significantly new nontrivial scientific result of investigation presented in this article is a formal logical inference of the law of conservation of energy within the formal axiomatic theory Sigma from conjunction of the formal-axiological analog of the law of conservation of energy and the assumption of a-priori-ness of knowledge.
文摘Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as C-D inequalities are pointed out, and finally new and more general conservation laws of energy and corresponding balance equations of energy as well as C-D inequalities in local and nonlocal asymmetric continua are presented.
文摘Existing fundamental laws, balance equations and Clausius-Duhem inequalities in continua with microstructure are systematically restudied, and the incomplete formulations of conservation laws of energy and related C-D inequalities are pointed out. Some remarks on existing results are made, and new conservation laws of energy and related C-D inequalities are presented.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11072218) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6100337).
文摘Lie symmetry and Mei conservation law of continuum Lagrange system are studied in this paper. The equation of motion of continuum system is established by using variational principle of continuous coordinates. The invariance of the equation of motion under an infinitesimal transformation group is determined to be Lie-symmetric. The condition of obtaining Mei conservation theorem from Lie symmetry is also presented. An example is discussed for applications of the results.
文摘Theoretical incompleteness of the existing conservation laws of energy for polar continuum mechanics is further clarified. For completeness, the principles of total work and energy and of total work and energy of incremental rate type are postulated. Via total variations of the former and the latter of them, the principles of virtual displacement and microrotation & stress and couple stress as well as virtual velocity and angular velocity & stress rate and couple stress rate are immediately obtained, respectively. From these principles all balance equations and boundary conditions for micropolar mechanics are naturally and simultaneously deduced. The essential differences between the nontraditional results obtained in this paper and the existing conservation laws of energy are expounded.
基金the National Natural Science Foundationthe Doctoral Programme Foundation of Institution of Higher Education of China
文摘By introducing the generalized quasi-symmetry of the infinitesimaltransformation for transformation group G_r, this paper studies theconservation laws and symmetries of dynamical systems with unilateralconstraints in phase space. Noether's theorem and Noether's inversetheorem for me- chanical system with unilateral constraints in phasespace are obtained and two kinds of equivalent forms of generalizedKilling equations which are used to determine the generators of theinfinitesimal group transformation are given.
文摘In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
文摘The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-Fermi equation is solved self-consistently in the cases of (a) semi-infinite planes of jellium (i.e. smeared uniform positive ions) and (b) a semi-infinite cylinder of finite radius, cleaved by a plane perpendicular to its axis. In (a), the elastic region has the form F(z)=Az ∝ Zrs-11/2, where rs is the mean interelectronic distance in the jellium model. Size effects are then considered, with possible relevance to atomic force microscopy.Defect energies are treated, using both electron theory and pair force laws.
文摘Nanocellulose is a new-age material derived from cellulosic biomass and has large specific surface area, high modulus and highly hydrophilic in nature. It comprises of two structural forms viz., nanofibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). This review provides a critical overview of the recent methods of bio- and chemo-mechanical processes for production of nanocellulose, their energy requirements and their functional properties. More than a dozen of pilot plants/commercial plants are under operation mostly in the developed countries, trying to exploit the potential of nanocellulose as reinforcing agent in paper, films, concrete, rubber, polymer films and so on. The utilization of nanocellulose is restricted mainly due to initial investment involved, high production cost and lack of toxicological information. This review focuses on the current trend and exploration of energy efficient and environment-friendly mechanical methods using pretreatments (both chemical and biological), their feasibility in scaling up and the future scope for expansion of nanocellulose application in diverse fields without impacting the environment. In addition, a nanocellulose quality index is derived to act as a guide for application based screening of nanocellulose production protocols.
基金The project supported by the Natural Science Foundation of High Education of Jiangsu Province of China under Grant No. 04KJA130135 and the "Qing Lan" Project Foundation of Jiangsu Province of China
文摘The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetry, Lie symmetry and Mei symmetry of the system are given. Two types of new conservation laws, called the Hojman conservation law and the Mei conservation law respectively, are obtained, and the intrinsic relations among the symmetries and the new conservation laws are researched. At the end of the paper, an example is given to illustrate the application of the results.
文摘This paper shows that energy of 105 ton of oil can be obtained from space by fs (fermtosecond) eletromagnetic pulse technique in one second and one cm3 without any loss. This paper shows that the energy conservation law and Fermi golden rule should be negatived in some cases. The negation of Fermi golden rule has important influences on many fields based on quantum mechanics. For example, the present knowledge on the charge distribution in atomic nucleus might be wrong completely. This paper emphasizes that the proposition on introducing the concept of the energy support ability in space will cause a series of unimaginable discoveries, and, therefore is of epoch-making significance. This paper gives indirect experimental verifications for the necessity of introducing the concept of energy support ability in space, and suggests a very simple experiment to show directly that the energy conservation law and Fermi golden rule should be negatived in some cases.
文摘It is pointed out that the property of a constant energy characteristic for the circular motions of macroscopic bodies in classical mechanics does not hold when the quantum conditions for the motion are applied. This is so because any macroscopic body—lo-cated in a high-energy quantum state—is in practice forced to change this state to a state having a lower energy. The rate of the energy decrease is usually extremely small which makes its effect uneasy to detect in course of the observations, or experiments. The energy of the harmonic oscillator is thoroughly examined as an example. Here our point is that not only the energy, but also the oscillator amplitude which depends on energy, are changing with time. In result, no constant positions of the turning points of the oscillator can be specified;consequently the well-known variational procedure concerning the calculation of the action function and its properties cannot be applied.
基金Projects(41877272,51974359)supported by the National Natural Science Foundation of China。
文摘To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.
基金Natural Science Foundation of High Education of Jiangsu Province of China,"Qing Lan" Project Foundation of Jiangsu Province
文摘In this paper, we present a new method to construct the conservation laws for relativistic mechanical systems by finding corresponding integrating factors. First, the Lagrange equations of relativistic mechanical systems are established, and the definition of integrating factors of the systems is given; second, the necessary conditions for the existence of conserved quantities of the relativistic mechanical systems are studied in detail, and the relation between the conservation laws and the integrating factors of the systems is obtained and the generalized Killing equations for the determination of the integrating factors are given; finally, the conservation theorem and its inverse for the systems are established, and an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Nos.10072024 and 10472041)
文摘Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.
基金supported by the National Natural Science Foundation of China under Grant Nos. 40775067 and 40475026
文摘The fidelity scheme of physical conservation laws has been applied in the dynamic framework of a global spectral model. In this study, a set of diabatic physical processes are also involved. Based on six 30-day numerical integrations of real-time data, we show that the full model is able to reproduce the primary features of global energy cycle and hydrological distribution. Additionally, the root-mean-square error is dramatically decreased when diabatic processes are considered. Another advantage is that the false structure of "double Intertropical Convergence Zone (ITCZ)" is not seen in the result, although the orecioitation rate becomes lower.
基金the National Natural Science Foundation of China (10072024) the Research Foundation of Liaoning Education Committee (990111001)
文摘The purpose is to reestablish rather complete surface conservation laws for micropolar thermomechanical continua from the translation and the rotation invariances of the general balance law. The generalized energy-momentum and energy-moment of momentum tensors are presented. The concrete forms of surface conservation laws for micropolar thermomechanical continua are derived . The existing related results are naturally derived as special cases from the results proposed in this paper . The incomplete degrees of the existing surface conservation laws are clearly seen from the process of the deduction. The surface conservation laws for nonlocal micropolar thermomechanical continua may be easily obtained via localization .
文摘Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.
文摘The energy conservation law is applied to formulate the ductile and brittle creep fracture criterion for metallic materials. The criterion contains a summary of heat and latent energies. Assuming that the heat energy is given out so it has no effect on the fracture process, the ductile creep fracture criterion is simplified. To take into account the evaluation of the damage state of materials the compressibility condition is introduced and the brittle creep fracture law is formulated.
文摘The world’s growing energy demand poses a serious problem. At the same time fossil fuels are finite, which we must work against. Therefore, the Federal Government of Germany has set itself the goal to push forward the use of renewable energy in order to completely do without the generation of nuclear energy by 2023. There are, however, no specific guidelines from the European Directive on the promotion of electricity from renewable energy sources for the internal electricity market regarding how high each share of the different production method should be and, above all, which specific aim should be achieved by the share of wind energy. Nevertheless, it presents a crucial step toward a nuclear phaseout and a concomitant change of course of the Federal Government of Germany in the spring of 2011 regarding the expansion of renewable energy, taking the nuclear catastrophe in Fukushima into account. Using new legal planning approaches, also including the area of Rhineland-Palatinate, opportunities should be provided to make previously protected land available for setting up facilities for the generation of renewable energy. However, it is important to examine the legal situation regarding the installation of these kinds of constructions more detailed, as no general statements can be made. This will be illustrated using the example of the landscape conservation area “Eulenkopf and surrounding area” in the district of Kaiserslautern. The stated goal of the Social Democrat/Green coalition of the federal state government of Rhineland-Palatinate is to considerably expand the generation of electricity from renewable energy sources so that by 2030 at least the entire electricity demand can be covered by those. Due to the enormous potential of wind power, it is therefore necessary to quintuple its share of electricity generation by 2020, compared to 2011 numbers. In order to achieve the desired political objectives, by 2030 the number of turbines has to be increased to around 2650, representing a capacity of 7500 MW. This increase gives reason for boundary conditions to manage the generation of wind energy to be adjusted. This is intended to facilitate management and simultaneously minimise negative effects, such as the “sprawling” of wind turbines.