期刊文献+
共找到94,859篇文章
< 1 2 250 >
每页显示 20 50 100
Reversible Mn^(2+)/Mn^(4+)double-electron redox in P3-type layer-structured sodium-ion cathode
1
作者 Jie Zeng Jian Bao +8 位作者 Ya Zhang Xun-Lu Li Cui Ma Rui-Jie Luo Chong-Yu Du Xuan Xu Zhe Mei Zhe Qian Yong-Ning Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期79-88,I0004,共11页
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can cont... The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries. 展开更多
关键词 Sodium batteries Cathode materials layered structure Co substitution
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
2
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics Constant potential method Electrode potential
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping
3
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc‑Ion Batteries
4
作者 Yimei Chen Zhiping Deng +5 位作者 Yongxiang Sun Yue Li Hao Zhang Ge Li Hongbo Zeng Xiaolei Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期285-299,共15页
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro... The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1). 展开更多
关键词 Zinc anode Electric double-layer regulation Multifunction SEI layer Inhibited side reactions and dendrite Rapid kinetics
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries
5
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Effect of Single- versus Double-Layer Uterine Closure during Caesarean Section on Niche Formation and Menstrual Irregularity
6
作者 Mohamed Samy Esraa Hussein Fouad Ghoneimy Walid Hitler 《Open Journal of Obstetrics and Gynecology》 2024年第1期57-68,共12页
Background: The myometrium at the location of the CS (caesarean section) scars, also known as residual myometrium thickness (RMT), is larger after a double-layer uterine closure procedure than following a single-layer... Background: The myometrium at the location of the CS (caesarean section) scars, also known as residual myometrium thickness (RMT), is larger after a double-layer uterine closure procedure than following a single-layer one. It may lessen the formation of a niche that is the myometrium’s disruption at the location of the scar of the uterus. Gynecological manifestations, obstetric problems in a future pregnancy and birth, and maybe subfertility are linked to thin RMT and a niche. Objective: To ascertain if double-layer unlocked closure of the uterus is better than single-layer one in terms of post-menstrual spotting and niche development following a first CS. Patients and Methods: In this randomized clinical study, 287 patients were evaluated for qualifying. Of all eligible individuals, 57 patients were excluded from the study based on the inclusion criteria. Results: The variation in ages, gestational age, body mass index (BMI), and cesarean section indications between the two assigned groups is statistically insignificant. However, postmenstrual spotting was statistically significantly more common in single-layer group compared to in double-group. The current study revealed ultrasound findings suggestive of niche formation was statistically significantly more common in single-layer group compared to in double-layer group. Conclusion: As evident from the current study, it demonstrates the advantages of double-layer unlocked closure of the uterus over single-layer one in terms of post-menstrual spotting and niche development following first-time cs. Thus, we deduced that fewer niches are formed, and fewer menstrual spotting occurs in the presence of double unlocked layers closure. To ascertain the impact of uterus closure method on post-operative niche development and the risk of obstetrics and gynaecological problems, further prospective trials with extended follow-up periods are required. 展开更多
关键词 SINGLE-layer Double Caesarean Section Residual Myometrium Thickness
下载PDF
Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As (Ⅲ) from aqueous solutions 被引量:1
7
作者 Najma Kamali Jahan B.Ghasemi +2 位作者 Ghodsi Mohammadi Ziarani Sahar Moradian Alireza Badiei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期374-380,共7页
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ... In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency. 展开更多
关键词 Graphene-based spherical adsorbent layered double hydroxide(LDH) Adsorption Spray-assisted deep-frying
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:1
8
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
Self-supported ultrathin NiCo layered double hydroxides nanosheets electrode for efficient electrosynthesis of formate 被引量:1
9
作者 Haoyuan Chi Jianlong Lin +6 位作者 Siyu Kuang Minglu Li Hai Liu Qun Fan Tianxiang Yan Sheng Zhang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期267-275,I0008,共10页
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,... Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions. 展开更多
关键词 CO_(2)reduction Methanol oxidation reaction FORMATE layered double hydroxides Oxygen vacancies
下载PDF
Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer
10
作者 牛雪锐 侯斌 +7 位作者 张濛 杨凌 武玫 张新创 贾富春 王冲 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期678-683,共6页
GaN-based p-channel heterostructure field-effect transistors(p-HFETs)face significant constraints on on-state currents compared with n-channel high electron mobility transistors.In this work,we propose a novel double ... GaN-based p-channel heterostructure field-effect transistors(p-HFETs)face significant constraints on on-state currents compared with n-channel high electron mobility transistors.In this work,we propose a novel double heterostructure which introduces an additional p-GaN insertion layer into traditional p-HFETs.The impact of the device structure on the hole densities and valence band energies of both the upper and lower channels is analyzed by using Silvaco TACD simulations,including the thickness of the upper AlGaN layer and the doping impurities and concentration in the GaN buffer layer,as well as the thickness and Mg-doping concentration in the p-GaN insertion layer.With the help of the p-GaN insertion layer,the C-doping concentration in the GaN buffer layer can be reduced,while the density of the two-dimensional hole gas in the lower channel is enhanced at the same time.This work suggests that a double heterostructure with a p-GaN insertion layer is a better approach to improve p-HFETs compared with those devices with C-doped buffer layer alone. 展开更多
关键词 GaN double-channel heterostructure field-effect transistors p-GaN insertion layer C-doped buffer layer
下载PDF
Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex
11
作者 Samiran Bhattacharjee Mohammad A. Matin +1 位作者 Hasina Akhter Simol Anowar Hosen 《Green and Sustainable Chemistry》 CAS 2023年第1期9-22,共14页
1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralo... 1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralone is still a big challenge with low-temperature processes using environmentally friendly routes even after decades of research. Herein, we demonstrate room-temperature oxidation of tetralin to 1-tetralone over layered double hydroxide-hosted sulphonato-salen-nickel(II) complex, LDH-[Ni-salen]. The layered double hydroxide-hosted sulphonato-salen-nickel(II) compound was characterized by powder X-ray diffraction, Fourier transform infrared spectrometer (FTIR), UV-Visible diffuse reflectance spectra, scanning electron microscopy (SEM) and elemental analysis. The theoretical calculations of free sulphonato-salen-nickel(II) complex using Density Functional Theory/CAM-B3LYP at the 6-311++ G(d,p) level of theory were also used to determine the orientation of the Ni-salen compound within the layered structure. The immobilized compound, LDH-[Ni-salen] was found to be an effective reusable catalyst for the oxidation of tetralin to 1-tetralone using a combination of trimethylacetaldehyde and molecular oxygen (14.5 psi) and at 25&deg;C. At 45.5% conversion, tetralin was converted to 1-tetralone with 77.2% selectivity at room temperature and atmospheric pressure after 24 h. The catalyst recycles test and hot filtration experiment showed that oxidation proceeded through Ni(II) sites in LDH-[Ni-salen]. The catalysts were reused several times without losing their catalytic activity and selectivity. The present results may provide a convenient strategy for the preparation of 1-tetralone using layered double hydroxide-based heterogeneous catalyst at ambient temperature for industrial application in near future. 展开更多
关键词 Sulphonato-Salen-Nickel(II) layered Double Hydroxide Tetralin Oxidation Room Temperature 1-Tetralone
下载PDF
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:1
12
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 Electromagnetic interference shielding layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Cascading Delays for the High-Speed Rail Network Under Different Emergencies:A Double Layer Network Approach
13
作者 Xingtang Wu Mingkun Yang +3 位作者 Wenbo Lian Min Zhou Hongwei Wang Hairong Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期2014-2025,共12页
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del... High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded. 展开更多
关键词 Delay propagation double layer network high speed rail network max-plus algebra
下载PDF
Advances in Mg-Al-layered double hydroxide steam coatings on Mg alloys:A review
14
作者 Shi-Qi Pan Fen Zhang +1 位作者 Cuie Wen Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1505-1518,共14页
Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film prep... Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys. 展开更多
关键词 Corrosion layered double hydroxide(LDH) Mg alloy Steam coating Surface modification
下载PDF
Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon
15
作者 Zhe-Fan Wang Cheng Tang +6 位作者 Qian Sun Ya-Lu Han Zhi-Jian Wang Lijing Xie Shou-Chun Zhang Fang-Yuan Su Cheng-Meng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期120-127,I0004,共9页
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to... N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications. 展开更多
关键词 Carbon materials Electrochemical double layer Electrochemical quartz crystal microbalance In-situ X-ray photoelectron spectroscopy N-DOPING
下载PDF
The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation
16
作者 Xiaodong Yang Na Yang +4 位作者 Ziqiang Gong Feifei Peng Bin Jiang Yongli Sun Luhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期296-305,共10页
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific... In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water. 展开更多
关键词 Superhydrophobic sponge Ni-Co double layered oxides Thiol modification Oil absorption Oil/water separation
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
17
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Identification and comparison of the local physicochemical structures of transition metal-based layered double hydroxides for high performance electrochemical oxygen evolution reactions
18
作者 Min Sung Kim Bipin Lamichhane +5 位作者 Ju-Hyeon Lee Jin-Gyu Bae Jeong Yeon Heo Hyeon Jeong Lee Shyam Kattel Ji Hoon Lee 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期89-97,I0004,共10页
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ... Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts. 展开更多
关键词 layered double hydroxides Oxygen evolution reaction In situ X-ray analyses Density functional theory Catalytic active sites
下载PDF
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
19
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template
20
作者 王冬雪 付静 +3 位作者 李义 姚震 刘爽 刘冰冰 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期61-72,共12页
We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confin... We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confined LP-N and HLP-N at ambient conditions is revealed. 展开更多
关键词 AMBIENT layerED polymeric
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部