期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Physical Layer Security in MIMO Wiretap Channels with Antenna Correlation 被引量:4
1
作者 Gangcan Sun Zhuo Han +2 位作者 Jingbo Jiao Zhongyong Wang Dagang Wang 《China Communications》 SCIE CSCD 2017年第8期149-156,共8页
To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Div... To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance. 展开更多
关键词 physical layer security antenna correlation wiretap channels outage probability Nakagami-m fading
下载PDF
The effect of a layer of varying density on spatial correlation of sea-bottom backscattering signal 被引量:4
2
作者 LI Dandan WANG Changhong +1 位作者 ZHAO Erliang QIU Wei 《Chinese Journal of Acoustics》 CSCD 2015年第2期107-122,共16页
The research is about the effect of a layer of varying density of sea-bottom sediments on spatial correlation of sea-bottom backscattering. The relationship between scattering cross section and spatial correlation is ... The research is about the effect of a layer of varying density of sea-bottom sediments on spatial correlation of sea-bottom backscattering. The relationship between scattering cross section and spatial correlation is that backscattering cross section decreases quickly and the spatial correlation becomes stronger as the incident angle increases. Therefore, the density- depth profile is introduced into sea-bottom high-frequency backscattering echo model, which is used to simulate sea-bottom backscattering and calculate the function of spatial correlation. The influence of the density gradient on spatial correlation of sea-bottom backscattering is investigated by analyzing the relations between vertical gradient of density and the scattering cross section. As can be seen from the simulation results, the impact of the density gradient on the spatial correlation is found more significant. While the density gradient increases, the scattering cross-section and the radius of the spatial correlation broaden, the spatial correlation becomes stronger. At the same time, the scattering cross-section decreases more quickly as the incident angle increases. 展开更多
关键词 The effect of a layer of varying density on spatial correlation of sea-bottom backscattering signal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部