To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear...To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.展开更多
In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the ...In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.展开更多
Presents a novel approach of multi layer sensing for perception of high level environmental information related to many conventional physical quantities, such as temperature, humidity and brightness, which focuses on ...Presents a novel approach of multi layer sensing for perception of high level environmental information related to many conventional physical quantities, such as temperature, humidity and brightness, which focuses on the processing of multi functional variables in a multi layer framework, and consists of multi functional sensing and multi layer fusion. Concerning the first aspect, a CdS and Fe 3O 4 materials based multi function sensor has been developed to measure the three quantities, and provides a possible solution to the sensor multi functional measurement equations, especially when the sensor processes more than three quantities, and proposes ways to evaluate the concerned environment as degree of comfort, Quantity Creditability Tactics (QCT) of multi layer data fusion.展开更多
气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法...气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。展开更多
Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful...Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
基金support by the Aerospace Research Project of China under Grant No.020202。
文摘To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.
文摘In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.
文摘Presents a novel approach of multi layer sensing for perception of high level environmental information related to many conventional physical quantities, such as temperature, humidity and brightness, which focuses on the processing of multi functional variables in a multi layer framework, and consists of multi functional sensing and multi layer fusion. Concerning the first aspect, a CdS and Fe 3O 4 materials based multi function sensor has been developed to measure the three quantities, and provides a possible solution to the sensor multi functional measurement equations, especially when the sensor processes more than three quantities, and proposes ways to evaluate the concerned environment as degree of comfort, Quantity Creditability Tactics (QCT) of multi layer data fusion.
文摘气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。
文摘Heavy-ion-driven fusion (HIF) is a scheme to achieve inertial confinement fusion (ICF). Investigation of the non-uniformity of heavy-ion beam (HIB) irradiation is one of the key issues for ICF driven by powerful heavy-ion beams. Ions in HIB impinge on the pellet surface and deposit their energy in a relatively deep and wide area. Therefore, the non-uniformity of HIB irradiation should be evaluated in the volume of the deposition area in the absorber layer. By using the OK1 code with some corrections, the non-uniformity of heavy-ion beam irradiation for the different ion beams on two kinds of targets were evaluated in 12-beam, 20-beam, 60-beam and 120-beam irradiation schemes. The root-mean-square (RMS) non-uniformity value becomes aRMS = 8.39% in an aluminum mono-layer pellet structure and aRMS = 6.53% in a lead-aluminum layer target for the 12-uranium-beam system. The RMS non-uniformity for the lead-aluminum layer target was lower than that for the mono-layer target. The RMS and peak-to-valley (PTV) non-uniformities are reduced with the increase in beam number, and low at the Bragg peak layer.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.