期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice 被引量:4
1
作者 LU Chuan-gen YAO Ke-min HU Ning 《Agricultural Sciences in China》 CAS CSCD 2011年第3期351-362,共12页
Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theo... Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants. 展开更多
关键词 canopy structure layered leaf area index lai k MODEL plant type RICE
下载PDF
基于无人机影像的冬小麦株高提取与LAI估测模型构建
2
作者 夏积德 牟湘宁 +4 位作者 张鑫 张怡宁 梁琼丹 张青峰 王稳江 《陕西农业科学》 2024年第6期77-84,共8页
株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株... 株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。 展开更多
关键词 无人机可见光遥感 冬小麦 株高 叶面积指数 估测模型
下载PDF
Mapping Spatial and Temporal Variations of Leaf Area Index for Winter Wheat in North China 被引量:13
3
作者 YANG Peng WU Wen-bin +3 位作者 TANG Hua-jun ZHOU Qing-bo ZOU Jin-qiu ZHANG Li 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1437-1443,共7页
Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal... Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain. 展开更多
关键词 leaf area index lai winter wheat spectral vegetation index (SVI) Landsat TM North China Plain
下载PDF
Optimal waveband identification for estimation of leaf area index of paddy rice 被引量:9
4
作者 Fu-min WANG Jing-feng HUANG +1 位作者 Qi-fa ZHOU Xiu-zhen WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第12期953-963,共11页
The objectives of the study were to select suitable wavebands for rice leaf area index (LAI) estimation using the data acquired over a whole growing season, and to test the efficiency of the selected wavebands by co... The objectives of the study were to select suitable wavebands for rice leaf area index (LAI) estimation using the data acquired over a whole growing season, and to test the efficiency of the selected wavebands by comparing them with feature positions of rice canopy spectra. In this study, the field experiment in 2002 growing season was conducted at the experimental farm of Zhejiang University, Hangzhou, China. Measurements of hyperspectral reflectance (350-2500 nm) and corresponding LAI were made for a paddy rice canopy throughout the growing season. And three methods were employed to identify the optimal wavebands for paddy rice LAI estimation: correlation coefficient-based method, vegetation index-based method, and stepwise regression method. This research selected 15 wavebands in the region of 350-2500 nm, which appeared to be the optimal wavebands for the paddy rice LAI estimation. Of the selected wavebands, the most frequently occurring wavebands were centered around 554, 675, 723, and 1633 rim. They were followed by 444, 524, 576, 594, 804, 849, 974, 1074, 1219, 1510, and 2194 rim. Most of them made physical sense and had their counterparts in spectral known feature positions, which indicates the promising potential of the 15 selected wavebands for the retrieval of paddy rice LAI. 展开更多
关键词 RICE Hyperspectral reflectance leaf area index lai Wavebands identification
下载PDF
Leaf area index retrieval based on canopy reflectance and vegetation index in eastern China 被引量:5
5
作者 JIANGJianjun CHENSuozhong +3 位作者 CAOShunxian WUHongan ZHANGLi ZHANGHailong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第2期247-254,共8页
The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were ... The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were collected in the study area of eastern China, dominated by bamboo, tea plant and greengage. Plant canopy reflectance of Landsat TM wavelength bands has been inversed using software of 6S. LAI is an important ecological parameter. In this paper, atmospheric corrected Landsat TM imagery was utilized to calculate different vegetation indices (VI), such as simple ratio vegetation index (SR), shortwave infrared modified simple ratio (MSR), and normalized difference vegetation index (NDVI). Data of 53 samples of LAI were measured by LAI-2000 (LI-COR) in the study area. LAI was modeled based on different reflectances of bands and different vegetation indices from Landsat TM and LAI samples data. There are certainly correlations between LAI and the reflectance of TM3, TM4, TM5 and TM7. The best model through analyzing the results is LAI = 1.2097*MSR + 0.4741 using the method of regression analysis. The result shows that the correlation coefficient R2 is 0.5157, and average accuracy is 85.75%. However, whether the model of this paper is suitable for application in subtropics needs to be verified in the future. 展开更多
关键词 Landsat TM leaf area index (lai) vegetation indices retrieval model Taihu Lake
下载PDF
The Suitability of Using Leaf Area Index to Quantify Soil Loss under Vegetation Cover 被引量:7
6
作者 ZHANG Wentai YU Dongsheng +4 位作者 SHI Xuezheng WANG Hongjie GU Zhujun ZHANG Xiangyan TAN Manzhi 《Journal of Mountain Science》 SCIE CSCD 2011年第4期564-570,共7页
Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss u... Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation. 展开更多
关键词 leaf area indexlai Runoff steady state Sediment concentration Simulated rainfall
下载PDF
Estimating the crop leaf area index using hyperspectral remote sensing 被引量:18
7
作者 LIU Ke ZHOU Qing-bo +2 位作者 WU Wen-bin XIA Tian TANG Hua-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期475-491,共17页
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop cano... The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review. 展开更多
关键词 hyperspectral inversion leaf area index lai retrieval
下载PDF
基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法
8
作者 包塔娜 范文义 《浙江农林大学学报》 CAS CSCD 北大核心 2024年第4期841-849,共9页
【目的】现有叶面积指数(LAI)产品大多存在分辨率低、数据异常和精度低等问题,难以满足某些应用需求。因此,本研究提出一种多源LAI数据的融合方法,以减少不同来源数据的差异并提高产品精度。【方法】以帽儿山实验林场的阔叶林和针叶林... 【目的】现有叶面积指数(LAI)产品大多存在分辨率低、数据异常和精度低等问题,难以满足某些应用需求。因此,本研究提出一种多源LAI数据的融合方法,以减少不同来源数据的差异并提高产品精度。【方法】以帽儿山实验林场的阔叶林和针叶林区域为研究区,基于2017年的MODIS、VIIRS和PROBA-V的LAI产品,利用多年LAI数据作为先验知识建立LAI背景库修正低质量数据,对3种LAI数据集进行混合像元分解的降尺度处理,基于Sentinel-2反射率产品耦合集合卡尔曼滤波(EnKF)算法、LAI动态模型和辐射传输模型进行数据同化,最后对同化后的3种LAI数据进行赋权融合,使用实测数据进行精度评价。【结果】在阔叶林,同化后的MODIS、VIIRS和PROBA-V LAI与实测数据的相关系数分别为0.59、0.56和0.62,比原始数据提升了0.57、0.52和0.57;均方根误差分别为0.37、0.31和0.14,比原始数据减小了1.23、1.69和1.06。在针叶林,同化后的MODIS、VIIRS和PROBA-V LAI与实测数据的相关系数分别为0.59、0.49和0.56,比原始数据提升了0.52、0.30和0.40;均方根误差分别为0.24、0.28和0.19,比原始数据减小了1.22、0.67和1.35。通过融合方法,阔叶林LAI和针叶林LAI的相关系数分别为0.83和0.76,比同化后数据的相关性更高;均方根误差分别为0.15和0.13,比同化后数据的误差更小。【结论】通过数据同化提升了3种LAI产品精度,融合后LAI较同化后单一LAI具有更高的精度和可靠性。 展开更多
关键词 叶面积指数(lai) MODIS VIIRS PROBA-V 重建 集合卡尔曼滤波(EnKF) 数据融合
下载PDF
A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge 被引量:1
9
作者 ZHU Xiaohua ZHAO Yingshi FENG Xiaoming 《Chinese Geographical Science》 SCIE CSCD 2013年第5期550-561,共12页
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were c... In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI. 展开更多
关键词 ASSIMILATION temporal and spatial knowledge leaf area index lai crop model Ensemble Kalman Filter (EnKF)
下载PDF
Leaf area index based nitrogen diagnosis in irrigated lowland rice 被引量:2
10
作者 LIU Xiao-jun CAO Qiang +5 位作者 YUAN Zhao-feng LIU Xia WANG Xiao-ling TIAN Yong-chao CAO Wei-xing ZHU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第1期111-121,共11页
Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic... Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic models in irrigated lowland rice. Four field experiments were carried out in Jiangsu Province of East China from 2009 to 2014. Different N application rates and plant densities were used to generate contrasting conditions of N availability or population densities in rice. LAI was determined by LI-3000, and estimated indirectly by LAI-2000 during vegetative growth period. Group and individual plant characters (e.g., tiller number (TN) and plant height (H)) were investigated simultaneously. Two N indicators of plant N accumulation (NA) and N nutrition index (NNI) were measured as well. A calibration equation (LAI=1.7787LAI2o00-0.8816, R2=0.870") was developed for LAI-2000. The linear regression analysis showed a significant relationship between NA and actual LAI (R2=0.863^**). For the NNI, the relative LAI (R2=0.808-) was a relatively unbiased variable in the regression than the LAI (R^2=0.33^**). The results were used to formulate two LAI-based N diagnostic models for irrigated lowland rice (NA=29.778LAI-5.9397; NNI=0.7705RLAI+0.2764). Finally, a simple LAI deterministic model was developed to estimate the actual LAI using the characters of TN and H (LAI=-0.3375(THxHx0.01)2+3.665(TH×H×0.01)-1.8249, R2=0.875**). With these models, the N status of rice can be diagnosed conveniently in the field. 展开更多
关键词 leaf area index RICE lai-2000 nitrogen diagnosis plant characters
下载PDF
基于无人机多光谱遥感的玉米LAI监测研究
11
作者 陈盛德 陈一钢 +4 位作者 徐小杰 刘俊宇 郭健洲 胡诗云 兰玉彬 《华南农业大学学报》 CAS CSCD 北大核心 2024年第4期608-617,共10页
[目的]探究更高效估测玉米LAI的无人机多光谱遥感监测模型,实现对玉米叶面积指数(Leaf area index,LAI)的快速预测估算。[方法]以全生长周期的玉米植株为研究对象,通过多光谱遥感无人机获取玉米植株影像并实地采集玉米LAI,利用多光谱信... [目的]探究更高效估测玉米LAI的无人机多光谱遥感监测模型,实现对玉米叶面积指数(Leaf area index,LAI)的快速预测估算。[方法]以全生长周期的玉米植株为研究对象,通过多光谱遥感无人机获取玉米植株影像并实地采集玉米LAI,利用多光谱信息研究植被指数与玉米LAI之间的定量关系,并选择相关的植被指数;分别使用多元线性逐步回归、支持向量机回归算法(Support vector machine regression,SVM)、随机森林回归算法(Random forest regression,RF)和基于鲸鱼算法(Whale optimization algorithm,WOA)优化的随机森林算法(WOA-RF)构建玉米LAI预测模型,通过分析对比,选择最优预测模型。[结果]筛选出的植被指数NDVI、NDRE、EVI、CIG与LAI呈极显著相关(P<0.01),构建了多元线性回归模型、SVM模型、RF模型和WOARF模型的预测模型,R2分别为0.873 2、0.878 0、0.917 7和0.940 8,RMSE分别为0.277 5、0.236 5、0.209 0和0.128 7。[结论]基于WOA-RF的玉米LAI预测模型的预测精度能够满足玉米生产的需要,对玉米生长期间的种植管理具有指导意义。 展开更多
关键词 无人机(UAV) 遥感 多光谱 玉米 叶面积指数(lai) 监测
下载PDF
High leaf area index expands the contrasting effect of climate warming on Western Siberia taiga forests activity before and after 2000 被引量:2
12
作者 SUN Han WANG Xiangping 《Journal of Geographical Sciences》 SCIE CSCD 2024年第1期131-145,共15页
The taiga vegetation in Western Siberia has been seriously threatened by climate warming in recent decades.However,how vegetation in different growing states and climate conditions responds to climate changes differen... The taiga vegetation in Western Siberia has been seriously threatened by climate warming in recent decades.However,how vegetation in different growing states and climate conditions responds to climate changes differently is still unclear.Here we explore the vegetation activity trends in Western Siberia taiga forests using the annual rate of change in leaf area index(LAI)during 1982–2018 so as to answer two questions:(1)how did climate warming affect taiga vegetation activity in the recent last decades?(2)Did the growing state of taiga forest affect its response to climate warming?Our results revealed that climate warming promoted taiga vegetation activity in Western Siberia before 2000.However,continuous warming caused excessive evapotranspiration and led to decreased vegetation activity after 2000.Moreover,the intensity of vegetation growth response to warming was positively related to canopy height and LAI,indicating that both the positive and negative effects of warming were more significant in taiga forests in better growing state.Since these forests generally have higher productivity and play more important roles in ecosystem functioning(e.g.,carbon sink and biodiversity conservation),our results highlight their vulnerability to future climate change that need more research attention. 展开更多
关键词 climate warming taiga forest leaf area index(lai) vegetation activity Western Siberia
原文传递
晚籼杂交稻LAI、SPAD和LTR的动态变化及对产量性状的影响
13
作者 廖亦龙 柳武革 +8 位作者 王丰 刘迪林 孔乐 李金华 付崇允 曾学勤 朱满山 马晓智 霍兴 《华南农业大学学报》 CAS CSCD 北大核心 2023年第6期936-948,共13页
【目的】研究晚籼杂交稻单株穗数、叶面积指数(Leaf area index,LAI)、叶片SPAD和透光率(Light transmittance rate,LTR)等指标的动态变化,进一步明确它们之间的相互关系及其对杂交稻产量和产量性状的影响,为杂交水稻育种和生产实践提... 【目的】研究晚籼杂交稻单株穗数、叶面积指数(Leaf area index,LAI)、叶片SPAD和透光率(Light transmittance rate,LTR)等指标的动态变化,进一步明确它们之间的相互关系及其对杂交稻产量和产量性状的影响,为杂交水稻育种和生产实践提供理论指导。【方法】以华南地区广泛应用的5个三系不育系和6个恢复系配置杂交组合,于2021年晚季在广州进行27个杂交组合的随机区组试验,分析杂种光合参数的动态变化规律以及不同发育阶段各光合参数对产量及产量性状的影响及相关性。【结果】杂种茎蘖数自移栽后直线上升,于移栽后25 d达分蘖高峰,始穗期(移栽后60 d)进入平稳期;杂种LAI自移栽后快速上升,于幼穗分化后期(移栽后50 d)后达最高值,之后进入回落期;叶片SPAD自移栽后逐步走低,生长发育前期组合间叶片SPAD差异不明显,进入灌浆结实期后存在显著(P<0.05)或极显著(P<0.01)差异;杂种群体LTR随发育进程呈逐步下降趋势。相关分析表明:分蘖盛期前(移栽后10~20 d)以及始穗期至灌浆期(移栽后60~76 d)的单株茎蘖数与杂种产量呈极显著正相关,增产作用主要通过增加单株实粒数实现;分蘖盛期至幼穗分化后期(移栽后25~50 d)的茎蘖数过多,增加了杂种群体的无效分蘖,造成杂种结实率下降和产量显著降低;分蘖前期(移栽后20 d)和始穗期(移栽后60 d)杂种LAI与产量呈极显著和显著正相关,相关系数分别为0.296和0.255,增产作用主要通过提高单株实粒数和千粒质量实现;灌浆期(移栽后76 d)的LAI与产量呈极显著负相关,相关系数为-0.312;生育前期(移栽后15~50 d)杂种SPAD对产量具有显著或极显著增产效应,而灌浆结实期(移栽后76~90 d)的SPAD则造成极显著减产;杂种群体LTR与产量呈极显著负相关,分蘖前期(移栽后20 d)和幼穗分化前期(移栽后38 d)的LTR与产量的相关系数分别为-0.282和-0.384。【结论】‘天丰A’‘五丰A’‘广恢998’和‘广恢308’组合的前期分蘖力强,茎蘖数多,叶面积系数大,早生快发性好;‘扬泰A’‘广恢998’等组合前期LTR较低、后期较高,有利于植株光合作用和产量提高。在不同生长发育阶段,光合参数通过影响杂种的不同产量性状,实现对杂种产量的影响。通过光合参数与杂种产量回归方程的拟合,能较好地对杂交水稻早期产量进行预测。 展开更多
关键词 杂交稻 动态变化 叶面积指数 SPAD 单株茎蘖数 透光率 产量性状
下载PDF
基于PROSAIL混合反演模型的MODIS LAI产品改进及评估
14
作者 赫晓慧 张乐涵 +2 位作者 乔梦佳 田智慧 周广胜 《生态学报》 CAS CSCD 北大核心 2023年第22期9328-9341,共14页
叶面积指数(Leaf Area Index,LAI)是定量陆地生态系统中光合作用、呼吸作用、蒸腾、碳和养分循环等过程中物质与能量交换的重要结构参数。目前大、中尺度的气候和生态水文建模使用的LAI产品主要来源于中分辨率成像光谱仪(MODIS),但由于... 叶面积指数(Leaf Area Index,LAI)是定量陆地生态系统中光合作用、呼吸作用、蒸腾、碳和养分循环等过程中物质与能量交换的重要结构参数。目前大、中尺度的气候和生态水文建模使用的LAI产品主要来源于中分辨率成像光谱仪(MODIS),但由于其反演过程中的不确定性因素导致MODIS LAI产品在部分地区存在质量问题。以青海省复杂植被地区为研究区域,基于实地考察与采样验证了区域内MODIS LAI所存在的质量问题分布,并揭示了不确定因素的影响。与此同时,提出了一种基于PROSAIL模型与深度神经网络(DNN)的混合建模技术,针对MODIS LAI生成机制中地表分类数据、地表反射率数据和反演算法的不确定性进行改进,并基于青海省大范围实测LAI数据评估了改进前后产品的准确度,实测数据的验证结果发现:改进模型的LAI准确度(RMSE=0.48,R^(2)=0.64)显著高于MODIS LAI(RMSE=0.71,R^(2)=0.56),预测结果与实测结果之间的偏差显著减少;区域尺度上,柴达木荒漠植被低覆盖典型区域、三江源高寒草甸中覆盖典型区域与青海湖牧场草地高覆盖典型区域的RMSE分别提高了0.19、0.10、0.54,改进方法有效解决了MODIS LAI产品中高覆盖植被饱和效应导致的高估以及低覆盖植被未检索导致低估的质量问题,改进结果分布连续,更符合真实植被状况。基于以上研究,充分证明了研究方法对MODIS LAI产品的改进具有可靠性,能够在缺少实测样本数据的情况下有效提高MODIS LAI的质量,为全球植被环境监测与生态建模提供重要的数据支持。 展开更多
关键词 MODIS lai PROSAIL模型 叶面积指数 深度神经网络
下载PDF
基于无人机多光谱的棉花多生育期叶面积指数反演 被引量:3
15
作者 石浩磊 曹红霞 +3 位作者 张伟杰 朱珊 何子建 张泽 《中国农业科学》 CAS CSCD 北大核心 2024年第1期80-95,共16页
【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田... 【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田间科学管理提供依据。【方法】利用大疆精灵4多光谱无人机获取棉花现蕾期、初花期、结铃期、吐絮期多光谱图像和RGB图像。选用归一化差植被指数(NDVI)、绿度归一化差植被指数(GNDVI)、归一化差红边指数(NDRE)、叶片叶绿素指数(LCI)、优化的土壤调节植被指数(OSAVI)5种多光谱指数和修正红绿植被指数(MGRVI)、红绿植被指数(GRVI)、绿叶指数(GLA)、超红指数(EXR)、大气阻抗植被指数(VARI)5种颜色指数分别建立棉花各生育期及棉花生长多生育期数据集合,结合打孔法获取地面LAI实测数据,使用机器学习算法中偏最小二乘(PLSR)、岭回归(RR)、随机森林(RF)、支持向量机(SVM)、神经网络(BP)构建棉花LAI预测模型。【结果】覆膜棉花LAI随着生育期的变化呈现先增长后下降的趋势,现蕾期、初花期、结铃期内侧棉花叶面积指数均值均显著大于外侧(P<0.05);选择的指数在各时期彼此间均呈显著相关(P<0.05),总体而言,多光谱指数与颜色指数间的相关性随着生育期的进行而呈现下降趋势,选择的指数在各时期均与棉花LAI相关性显著(P<0.05),多光谱指数相关系数介于0.35—0.85,颜色指数相关系数介于0.49—0.71,相关系数绝对值较大的指数多为多光谱指数,颜色指数与棉花LAI的相关系数绝对值较小;估测模型性能结果显示棉花各生育期模型中多光谱指数优于颜色指数,且各指数模型预测性能随着生育期的变化呈现一定规律性,NDVI是预测棉花LAI的最优指数。从模型结果上看,RF模型和BP模型在各生育期下获得了较高的估计精度。初花期LAI反演模型精度最高,最优模型验证集R2为0.809,MAE为0.288,NRMSE为0.120。多生育期最优模型验证集R2为0.386,MAE为0.700,NRMSE为0.198。【结论】棉花内外侧LAI在现蕾期、初花期、结铃期存在显著差异。在各生育期中,RF和BP模型是预测棉花LAI较优模型。NDVI在各指数中表现最好,是预测棉花LAI的最优指数。多生育期模型效果较单生育期明显下降,最优指数为GNDVI,最优模型为BP。本研究中预测棉花LAI的最优窗口期是初花期。研究结果可为无人机遥感监测棉花LAI提供理论依据和技术支持。 展开更多
关键词 棉花 叶面积指数 多光谱指数 颜色指数 无人机多光谱 机器学习
下载PDF
利用交叉验证的小麦LAI反演模型研究 被引量:15
16
作者 任哲 陈怀亮 +2 位作者 王连喜 李颖 李琪 《国土资源遥感》 CSCD 北大核心 2015年第4期34-40,共7页
叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI... 叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量;将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型;最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明:经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE)整体上较未经交叉验证反演建模结果的RMSE小;在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。 展开更多
关键词 叶面积指数(lai) 遥感反演 交叉验证 小麦
下载PDF
叶面积指数(LAI)的遥感定量方法综述 被引量:150
17
作者 方秀琴 张万昌 《国土资源遥感》 CSCD 2003年第3期58-62,共5页
总结了当前遥感定量研究叶面积指数(LAI)的两种主要方法:统计模型法和光学模型法,阐述了各自的机理和研究进展,在此基础上,讨论了两种方法的优缺点及未来的发展趋势。
关键词 叶面积指数 lai 统计模型法 光学模型法
下载PDF
基于数据分割与主成分分析的LAI遥感估算 被引量:10
18
作者 董莹莹 王纪华 +4 位作者 李存军 杨贵军 宋晓宇 顾晓鹤 黄文江 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第2期124-130,共7页
针对叶面积指数(LAI)经典统计反演模型存在估算效果不理想以及反演效率低等问题,提出了一种基于农学物候的数据分割与主成分分析结合的遥感估算方法.综合了原始光谱和微分(或差分)光谱主成分信息作为自变量,融入了以农学物候为先验的数... 针对叶面积指数(LAI)经典统计反演模型存在估算效果不理想以及反演效率低等问题,提出了一种基于农学物候的数据分割与主成分分析结合的遥感估算方法.综合了原始光谱和微分(或差分)光谱主成分信息作为自变量,融入了以农学物候为先验的数据分割思想,并引入了多尺度建模方式参与反演过程.以冬小麦为实验对象,进行数值模拟和比较分析.结果显示,该方法既能有效地提高整体估算精度,又能显著地改善数据饱和问题,且在全样本遍历时体现了稳定鲁棒性. 展开更多
关键词 主成分分析(PCA) 农学物候 数据分割 多尺度建模 叶面积指数(lai)
下载PDF
利用CHRIS/PROBA数据定量反演草地LAI方法研究 被引量:6
19
作者 李新辉 宋小宁 冷佩 《国土资源遥感》 CSCD 2011年第3期61-66,共6页
以内蒙古锡林河流域典型草地为研究样区,基于新一代微卫星CHRIS/PROBA高光谱遥感数据,利用双层冠层反射率模型(A two-layer Canopy Reflectance Model,ACRM)定量反演叶面积指数(LAI)。首先对高光谱数据进行预处理和统计分析,并结合反演... 以内蒙古锡林河流域典型草地为研究样区,基于新一代微卫星CHRIS/PROBA高光谱遥感数据,利用双层冠层反射率模型(A two-layer Canopy Reflectance Model,ACRM)定量反演叶面积指数(LAI)。首先对高光谱数据进行预处理和统计分析,并结合反演结果对角度信息的敏感性进行分析,确定适于该区的最优波段组合和参数,实现了区域尺度的草地叶面积指数定量反演;然后利用该区多年实测数据的统计结果对ACRM模型进行检验,并将反演结果与MODIS的LAI数据进行相互校验分析。结果表明,CHRIS/PROBA数据用于反演稀疏草地的LAI是可行的,且利用多角度信息可以改善稀疏植被覆盖情况下LAI低估问题。本研究可为草地生态系统研究提供更精确的参数,具有一定的实际意义。 展开更多
关键词 CHRIS/PROBA 稀疏草地 叶面积指数(lai) 双层冠层反射率模型(ACRM)
下载PDF
融合可见光-近红外与短波红外特征的新型植被指数估算冬小麦LAI 被引量:6
20
作者 李鑫川 鲍艳松 +3 位作者 徐新刚 金秀良 张竞成 宋晓宇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第9期2398-2402,共5页
考虑到短波红外特征与叶面积指数(LAI)有很好的关联,将短波红外特征的典型水分指数与基于可见光-近红外特征的植被指数相融合,尝试构建新的植被指数估算作物LAI。通过PROSAIL辐射传输模型分析新植被指数对LAI饱和响应的特征;利用2009年... 考虑到短波红外特征与叶面积指数(LAI)有很好的关联,将短波红外特征的典型水分指数与基于可见光-近红外特征的植被指数相融合,尝试构建新的植被指数估算作物LAI。通过PROSAIL辐射传输模型分析新植被指数对LAI饱和响应的特征;利用2009年和2008年北京地区冬小麦实测光谱数据进行LAI估算建模与验证。结果表明:所选择的10个典型可见光-近红外植被指数分别与5个水分植被指数相结合构建的新指数,都能够有效提高与LAI的相关性,特别是在融合了含有短波红外特征的sLAIDI*指数后,新指数显著提高了对LAI响应的饱和点,而对植被水分变化不敏感,LAI估算精度得到改善。研究表明:将短波红外特征引入到可见光-近红外植被指数中,构建的新植被指数对冬小麦LAI估算具有明显的优势。 展开更多
关键词 lai 高光谱遥感 植被指数 短波红外 slaiDI*
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部