The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
Subsurface water flow velocity influences the hydrodynamic characteristics of soil seepage and the interaction between subsurface water flow and surface runoff during soil erosion and sediment transport.A visualized m...Subsurface water flow velocity influences the hydrodynamic characteristics of soil seepage and the interaction between subsurface water flow and surface runoff during soil erosion and sediment transport.A visualized method and equipment was adopted in this study to observe the subsurface water flow.Quartz sand was used as the test material of subsurface water flow and fluorescent dye was used as the indicator for tracing subsurface water flow.Water was supplied at the same flow discharge to the three parts at the bottom of the test flume,and the subsurface water flow were determined with four slope gradients(4°,8°,10°,and 12°).The results showed that the seepage velocity gradually increased with increasing slope gradient.The pore water velocity at different depths of sand layer profile increased with increasing slope gradient,whereas the thickness of the flow front gradually decreased.For the same slope gradient,the pore water velocity in the lower layer was the largest,whereas the thickness of the flow front was the smallest.Comparative analysis of the relationship between seepage velocity and pore water velocity at different depths of sand layer profile showed that the maximum relative difference between the measured pore water velocity and the computational pore water velocity at different depths of sand profile in the experiment was 4.38%.Thus,the test method for measuring the subsurface water flow velocity of sand layer profile adopted in this study was effective and feasible.The development of this experiment and the exploration of research methods would lay a good test foundation for future studies on the variation law of subsurface water flow velocity and the determination of flow velocity in purple soils,thus contributing to the improvement of the hydrodynamic mechanism of purple soils.展开更多
The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the i...The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.展开更多
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l...Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.展开更多
According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic mo...According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic model of cooling rate was established. The calculation value approximately agrees with the experimental result. Laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate increases along the plate direction gradually when the initial flow velocity is lower than 1 m/s, the melt cooling rate keeps nearly a constant when the initial flow velocity is 1 m/ s, when the initial flow velocity is higher than 1 m/s, the melt cooling rate decreases gradually. The melt cooling rate of cooling sloping plate process can reach 102-103 K/s and belongs to meta-rapid solidification scope.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
基金This work was supported by the Fundamental Research Funds for the National Natural Science Foundation of China(No.41571265,41971244)the Key Research and Development Project of Social Livelihood in Chongqing(cstc2018jscxmszdX0061)the Foundation of Graduate Research and Innovation in Chongqing under project CYB18089.
文摘Subsurface water flow velocity influences the hydrodynamic characteristics of soil seepage and the interaction between subsurface water flow and surface runoff during soil erosion and sediment transport.A visualized method and equipment was adopted in this study to observe the subsurface water flow.Quartz sand was used as the test material of subsurface water flow and fluorescent dye was used as the indicator for tracing subsurface water flow.Water was supplied at the same flow discharge to the three parts at the bottom of the test flume,and the subsurface water flow were determined with four slope gradients(4°,8°,10°,and 12°).The results showed that the seepage velocity gradually increased with increasing slope gradient.The pore water velocity at different depths of sand layer profile increased with increasing slope gradient,whereas the thickness of the flow front gradually decreased.For the same slope gradient,the pore water velocity in the lower layer was the largest,whereas the thickness of the flow front was the smallest.Comparative analysis of the relationship between seepage velocity and pore water velocity at different depths of sand layer profile showed that the maximum relative difference between the measured pore water velocity and the computational pore water velocity at different depths of sand profile in the experiment was 4.38%.Thus,the test method for measuring the subsurface water flow velocity of sand layer profile adopted in this study was effective and feasible.The development of this experiment and the exploration of research methods would lay a good test foundation for future studies on the variation law of subsurface water flow velocity and the determination of flow velocity in purple soils,thus contributing to the improvement of the hydrodynamic mechanism of purple soils.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-001,2011ZX05003-003)
文摘The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.
文摘Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.
基金Funded by the National Natural Science Foundation for Outstanding Young Scholars of China(No.51222405)the National Natural Science Foundation of China(No.51034002)+2 种基金the Fok Ying Tong Education Foundation(No.132002)the Basic Scientific Research Operation of Center University(N120602002,N120502001)the Chinese National Programfor Fundamental Research and Development(No.2011CB610405)
文摘According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic model of cooling rate was established. The calculation value approximately agrees with the experimental result. Laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate increases along the plate direction gradually when the initial flow velocity is lower than 1 m/s, the melt cooling rate keeps nearly a constant when the initial flow velocity is 1 m/ s, when the initial flow velocity is higher than 1 m/s, the melt cooling rate decreases gradually. The melt cooling rate of cooling sloping plate process can reach 102-103 K/s and belongs to meta-rapid solidification scope.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.