Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul...Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.展开更多
Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of the...Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of these LDHs is closely related to their morphology and electronic structure.However,there is a lack of theory on how to control reaction conditions to regulate the morphologies.In this paper,the growth mechanism of LDH prepared in different solvents is thoroughly studied.Consequently,the Co/Ni-LDHs exhibiting a 3D hierarchical flower-like structure were synthesized with normal alcohol as a solvent,meanwhile,the thickness of the LDHs can be controlled by the molecular weight of the normal alcohol.By adjusting the suitable Co/Ni ratio and solvent,the Co/Ni0.050-LDH-Me was synthesized and exhibited excellent OER performance.At 10 mA cm^(-2),the overpotential of Co/Ni0.050-LDH-Me is 307 mV,and the Tafel slope is 76.5 mV dec^(-1).展开更多
The hydrotalcite-like compound [Zn2Al·(OH)6] NO3·nH2O and [Mg2Al·(OH)6] NO3·nH2O (shorted as ZnA1-NO3 and MgAl-NO3) was intercalated with the chelating agent EDTA (Ethylenediaminetetraacetic...The hydrotalcite-like compound [Zn2Al·(OH)6] NO3·nH2O and [Mg2Al·(OH)6] NO3·nH2O (shorted as ZnA1-NO3 and MgAl-NO3) was intercalated with the chelating agent EDTA (Ethylenediaminetetraacetic Acid) and EDDS (N, N'-1, 2-Ethanediylbis-1-Aspartic Acid) by anion exchange. The materials synthesized in this work were characterized by chemical analysis, FT-IR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy) and XRD (Powder X-ray Diffraction) to confirm their properties. In order to discuss the adsorption capacity of LDHs (Layered Double Hydroxides), the adsorption experiment was investigated under the optimum condition (10 mg, 25℃ and 100 μg·L-1). The amount of metallic ions adsorbed by LDHs intercalated with EDTA and precursor LDHs were determined by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) and AAS (Atomic Absorption Spectrometry). The intercalation of EDTA leads to improve the adsorption capacity of LDHs. LDHs intercalated with chelating agents have generally high affinity for removing metallic ions, and they can be efficient adsorbents for metallic ions.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The beha...The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance(d value)for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM, the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.展开更多
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ...In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency.展开更多
The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamella...The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamellae was rendered accessible for chemical reactivity, showed excellent catalysis toward Suzuki reaction. The turnover frequency of this catalyst for Suzuki reaction between bromobenzene and phenylboronic acid is about 8000 h^-1.展开更多
Heavy metal pollution is one of the most severe environmental problems,possessing high ecotoxicity and health risk.Therefore,it is important to develop effective methods and corresponding materials for the detection a...Heavy metal pollution is one of the most severe environmental problems,possessing high ecotoxicity and health risk.Therefore,it is important to develop effective methods and corresponding materials for the detection and removal of heavy metals.Recent studies reveal the great potential of layered double hydroxides(LDHs)in detecting and removing heavy metals owing to their designable structure and tunable surface composition.In this review,we majorly discuss the recently adopted detection and removal of heavy metal ions based on LDHs.This review starts with an introduction of the structural characteristics and functionalization of LDHs.Then,the sensing tactics and mechanisms are introduced regarding LDHbased heavy metal ion detection.Based on the type of interaction,the removal of heavy metal ions with LDHs is summarized into two categories:reversible adsorption and irreversible mineralization.This review ends with a discussion on the challenges and future trends of LDH-based detectors and adsorbents for heavy metal ions.展开更多
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water sp...The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and COreduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.展开更多
Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practic...Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practice.However,considering the large quantities of contaminated soil,it is still a huge challenge to design low-cost amendments with strong and long-term immobilization ability.Layered double hydroxides(LDHs)have drawn tremendous attention in fundamental research and practical application because of their unique properties.Moreover,owing to its super-stable mineralization effect to heavy metal ions,LDHs have exhibited great potential in the field of soil remediation.In this work,we mainly focused on the scale production strategy of LDHs with low-cost,and its application in soil remediation.Besides,several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.We hope that this mini-review could shed light on the sustainable development of LDHs as amendment for heavy metals in future research directions.展开更多
Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water an...Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved. When used in supercapacitors, the obtained Co–Al-LDHs deliver a high specific capacitance of 838 Fg^(-1) at a current density of 1 Ag^(-1)and excellent rate performance(753 Fg^(-1) at 30 Ag^(-1) and 677 Fg^(-1) at 100 Ag^(-1)), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 Ag^(-1). This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.展开更多
The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide...The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.展开更多
Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni)∶n(Mg)∶n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. ...Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni)∶n(Mg)∶n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. Carbon nanotubes were produced in the catalytic decomposition of propane over the Ni/Mg/Al mixed oxide catalysts. The quality of as-made nanotubes was investigated by SEM and TEM. The nanotubes were multiwall with a high length-diameter ratio and appeared to be flexible. The catalytic activities of these mixed oxides increased with increasing the Ni content. The Ni/Mg/Al mixed oxide with the highest Ni content [n(Ni)/n(Mg)/n(Al)=1/1/1] showed the highest activity and the carbon nanotubes grown on its surface had the best quality.展开更多
Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film prep...Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys.展开更多
Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follo...Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follows: Mg2+ and Al3+ are hydrolyzed to form Mg/Al-LDH by adding Mg2+, Al3+ and NaOH in wastewater containing anion dyestuff, which is selectively intercalated with the interlayer of LDH in order to balance positive structural charge. While Mg2+ and Al3+ are co-precipitated to form LDH, the anion dyestuff in wastewater will be removed by LDH synthesized in-situ, as is confirmed by X-ray diffraction analysis of settlings and chemical analysis of aqueous samples. In this work, we studied the influence of Mg/Al mole ratio, pH value, time and temperature of reaction on the removal of anion dyestuff and the use of Mg and Al. The experimental results showed the maximum removal efficiency of anion dyestuff could be attained when pH value was 9.0, and Mg/Al mol ratio was 2∶1, reaction duration was 2 hours, and the effect of temperature was not remarkable, and the removal efficiency could reach 100%. Meanwhile, the Mg and Al added could be made good use of. This technology has the advantage of extraordinary efficiency of wastewater disposal.展开更多
Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-t...Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.展开更多
Green hydrogen production via seawater electrolysis holds a great promise for carbon-neutral energy production. However, the development of efficient and low-cost bifunctional electrocatalysts for seawater electrolysi...Green hydrogen production via seawater electrolysis holds a great promise for carbon-neutral energy production. However, the development of efficient and low-cost bifunctional electrocatalysts for seawater electrolysis at an industrial level remains a significant challenge. Herein, we report a facile approach based on one-dimensional (1D) cobalt carbonate hydroxide (CCH) nanoneedles (NNs) as skeleton and zeolitic imidazolate framework-67 (ZIF-67) as a sacrificial template to construct a self-supported NiCo layered double hydroxide (NiCo LDH) heterostructure nanocage (CCH@NiCo LDH) anchoring on the carbon felt (CF). The NiCo LDHs have hollow features, consisting of ultrathin layered hydroxide nanosheets. Benefiting from the structural advantages, unique carbon substrate and desirable composition, three-dimensional (3D) NiCo LDH nanocages exhibit superior performance as a bifunctional catalyst for overall seawater splitting at an industrial level and good corrosion resistance in alkaline media. In the alkaline seawater (1 M KOH + 0.5 M NaCl), it exhibits low overpotentials of 356 mV for hydrogen evolution reaction (HER) and 433 mV for oxygen evolution reaction (OER) at 400 mA·cm^(−2), much better than most of reported non-noble metal catalysts. Consequently, the obtained CF electrode loading of CCH@NiCo LDH exhibits outstanding performance as anodes and cathodes for overall alkaline seawater splitting, with remarkably low cell voltages of 1.56 and 1.89 V at current densities of 10 and 400 mA·cm^(−2), respectively. Moreover, the robust stability of 100 h is also demonstrated at above 200 mA·cm^(−2) in alkaline seawater. Our present work demonstrates significant potential for constructing effective cost-efficient and non-noble-metal bifunctional electrocatalyst and electrode for industrial seawater splitting.展开更多
Transition metal-based layered double hydroxides(LDHs)have been capable of working efficiently as catalysts in the basic oxygen evolution reaction(OER)for sustaining hydrogen production of alkaline water electrolysis....Transition metal-based layered double hydroxides(LDHs)have been capable of working efficiently as catalysts in the basic oxygen evolution reaction(OER)for sustaining hydrogen production of alkaline water electrolysis.Nevertheless,exploring new LDH-based electrocatalysts featuring both remarkable activity and good stability is still in high demand,which is pivotal for comprehensive understanding and impressive improvement of the sluggish OER kinetics.Here,a series of bimetallic(Co and Mo)LDH arrays were designed and fabricated via a facile and controlled strategy by incorporating a Mo source into presynthesized Co-based metal-organic framework(MOF)arrays on carbon cloth(CC),named as ZIF-67/CC arrays.We found that tuning the Mo content resulted in gradual differences in the structural properties,surface morphology,and chemical states of the resulting catalysts,namely CoMox-LDH/CC(x representing the added weight of the Mo source).Gratifyingly,the best-performing CoMo_(0.20)-LDH/CC electrocatalyst demonstrates a low overpotential of only 226 mV and high stability at a current density of 10 mA·cm^(−2),which is superior to most LDH-based OER catalysts reported previously.Furthermore,it only required 1.611 V voltage to drive the overall water splitting device at the current density of 10 mA·cm^(−2).The present study represents a significant advancement in the development and applications of new OER catalysts.展开更多
Developing isolated single atomic noble metal catalysts is one of the most effective methods to maximize noble metal atom utilization efficiency and enhance catalytic performances.Layered double hydroxides(LDHs)are tw...Developing isolated single atomic noble metal catalysts is one of the most effective methods to maximize noble metal atom utilization efficiency and enhance catalytic performances.Layered double hydroxides(LDHs)are two-dimensional nanoarchitectures in which M^(3+) and M^(2+) sites are atomically isolated due to static repulsions,providing special anchoring sites for single noble metal atoms and enabling the tuning of catalytic activity.Herein,a comprehensive review of the advances in LDHs supported single-atom catalysts(M/LDH SACs)is presented,focusing on the synthetic strategies,structure characterization,and application of M/LDH SACs in energy devices.Strong electronic coupling between single atomic noble metal atoms and corresponding anchoring sites of LDHs determines not only the catalytic activity of M/LDH SACs but also the stability during catalytic reactions.Furthermore,a perspective is proposed to highlight the challenges and opportunities for understanding the reaction mechanism and development of highly efficient M/LDH SACs.展开更多
文摘Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.
基金supported by the National Natural Science Foundation of China(52002111)the Natural Science Foundation of Hebei Province(E2024208054,B2022208006)Science Foundation of University of Hebei Province(JZX2024025).
文摘Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of these LDHs is closely related to their morphology and electronic structure.However,there is a lack of theory on how to control reaction conditions to regulate the morphologies.In this paper,the growth mechanism of LDH prepared in different solvents is thoroughly studied.Consequently,the Co/Ni-LDHs exhibiting a 3D hierarchical flower-like structure were synthesized with normal alcohol as a solvent,meanwhile,the thickness of the LDHs can be controlled by the molecular weight of the normal alcohol.By adjusting the suitable Co/Ni ratio and solvent,the Co/Ni0.050-LDH-Me was synthesized and exhibited excellent OER performance.At 10 mA cm^(-2),the overpotential of Co/Ni0.050-LDH-Me is 307 mV,and the Tafel slope is 76.5 mV dec^(-1).
文摘The hydrotalcite-like compound [Zn2Al·(OH)6] NO3·nH2O and [Mg2Al·(OH)6] NO3·nH2O (shorted as ZnA1-NO3 and MgAl-NO3) was intercalated with the chelating agent EDTA (Ethylenediaminetetraacetic Acid) and EDDS (N, N'-1, 2-Ethanediylbis-1-Aspartic Acid) by anion exchange. The materials synthesized in this work were characterized by chemical analysis, FT-IR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy) and XRD (Powder X-ray Diffraction) to confirm their properties. In order to discuss the adsorption capacity of LDHs (Layered Double Hydroxides), the adsorption experiment was investigated under the optimum condition (10 mg, 25℃ and 100 μg·L-1). The amount of metallic ions adsorbed by LDHs intercalated with EDTA and precursor LDHs were determined by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) and AAS (Atomic Absorption Spectrometry). The intercalation of EDTA leads to improve the adsorption capacity of LDHs. LDHs intercalated with chelating agents have generally high affinity for removing metallic ions, and they can be efficient adsorbents for metallic ions.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金Project(50703026)supported by the National Natural Science Foundation of Chinaproject(F/4285-1)supported by International Foundation for Science(IFS)+1 种基金project(20080440182,200902615)supported by China Postdoctoral Science Foundationproject supported by Guest-Scientist Research Fellowship granted by Leibniz Institute of Polymer Research Dresden,Germany
文摘The preparation of self-assembling organomodified Co/Al-layered double hydroxide(LDH)via one-step route was studied. A common surfactant,sodium dodecylbenzenesulfonate(DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance(d value)for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM, the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.
文摘In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency.
基金Supported by the National Natural Science Foundation of China(No.20476092)the Science Foundation of Taizhou University, China(No.09ZD12)
文摘The colloid of delaminated layered double hydroxides(LDHs), a new LDH-based catalyst, is described. The semi-heterogeneous delaminated colloidal MgPdA1-LDH, in which the total surface of catalytic site-bearing lamellae was rendered accessible for chemical reactivity, showed excellent catalysis toward Suzuki reaction. The turnover frequency of this catalyst for Suzuki reaction between bromobenzene and phenylboronic acid is about 8000 h^-1.
基金supported by the National Natural Science Foundation of China(22074005 and 21974008)the Natural Science Foundation of Beijing Municipality(2202038).
文摘Heavy metal pollution is one of the most severe environmental problems,possessing high ecotoxicity and health risk.Therefore,it is important to develop effective methods and corresponding materials for the detection and removal of heavy metals.Recent studies reveal the great potential of layered double hydroxides(LDHs)in detecting and removing heavy metals owing to their designable structure and tunable surface composition.In this review,we majorly discuss the recently adopted detection and removal of heavy metal ions based on LDHs.This review starts with an introduction of the structural characteristics and functionalization of LDHs.Then,the sensing tactics and mechanisms are introduced regarding LDHbased heavy metal ion detection.Based on the type of interaction,the removal of heavy metal ions with LDHs is summarized into two categories:reversible adsorption and irreversible mineralization.This review ends with a discussion on the challenges and future trends of LDH-based detectors and adsorbents for heavy metal ions.
基金supported by the National Natural Science Foundation of China(Nos.U146211821601011)+2 种基金the 973 Program(Grant No.2014CB932102)the Fundamental Research Funds for the Central Universities(buctrc201506PYCC1704)
文摘The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and COreduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.
基金supported by the National Natural Science Foundation of China(21978023)the Fundamental Research Funds for the Central Universities(XK1803-05)+1 种基金the Inno-vative Achievement Commercialization Service-Platform of Indus-trial Catalysis(2019-00900-2-1)the National Basic Research Program of China(2014CB932104)。
文摘Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practice.However,considering the large quantities of contaminated soil,it is still a huge challenge to design low-cost amendments with strong and long-term immobilization ability.Layered double hydroxides(LDHs)have drawn tremendous attention in fundamental research and practical application because of their unique properties.Moreover,owing to its super-stable mineralization effect to heavy metal ions,LDHs have exhibited great potential in the field of soil remediation.In this work,we mainly focused on the scale production strategy of LDHs with low-cost,and its application in soil remediation.Besides,several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.We hope that this mini-review could shed light on the sustainable development of LDHs as amendment for heavy metals in future research directions.
基金supported by the National Basic Research Program of China(2014CB239702)Research project of environmental protection in Jiangsu province(2016060)Science and Technology Commission of Shanghai Municipality(14DZ2250800)
文摘Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved. When used in supercapacitors, the obtained Co–Al-LDHs deliver a high specific capacitance of 838 Fg^(-1) at a current density of 1 Ag^(-1)and excellent rate performance(753 Fg^(-1) at 30 Ag^(-1) and 677 Fg^(-1) at 100 Ag^(-1)), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 Ag^(-1). This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (No.2014R1A1A2055740)the Start-up Research Grant(No.SRG2015-00057-FST)
文摘The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.
文摘Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni)∶n(Mg)∶n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. Carbon nanotubes were produced in the catalytic decomposition of propane over the Ni/Mg/Al mixed oxide catalysts. The quality of as-made nanotubes was investigated by SEM and TEM. The nanotubes were multiwall with a high length-diameter ratio and appeared to be flexible. The catalytic activities of these mixed oxides increased with increasing the Ni content. The Ni/Mg/Al mixed oxide with the highest Ni content [n(Ni)/n(Mg)/n(Al)=1/1/1] showed the highest activity and the carbon nanotubes grown on its surface had the best quality.
基金This work was supported by the National Natural Science Foundation of China through the projects 51601108 and 52071191。
文摘Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys.
基金Foundation item: Project supported by the National Natural Science Foundation of China (40472026).
文摘Based on the principle of synthesis, a new method was put forward to dispose Congo Red anion-containing dyestuff from wastewater and its feasibility was also examined. The principle of the method is described as follows: Mg2+ and Al3+ are hydrolyzed to form Mg/Al-LDH by adding Mg2+, Al3+ and NaOH in wastewater containing anion dyestuff, which is selectively intercalated with the interlayer of LDH in order to balance positive structural charge. While Mg2+ and Al3+ are co-precipitated to form LDH, the anion dyestuff in wastewater will be removed by LDH synthesized in-situ, as is confirmed by X-ray diffraction analysis of settlings and chemical analysis of aqueous samples. In this work, we studied the influence of Mg/Al mole ratio, pH value, time and temperature of reaction on the removal of anion dyestuff and the use of Mg and Al. The experimental results showed the maximum removal efficiency of anion dyestuff could be attained when pH value was 9.0, and Mg/Al mol ratio was 2∶1, reaction duration was 2 hours, and the effect of temperature was not remarkable, and the removal efficiency could reach 100%. Meanwhile, the Mg and Al added could be made good use of. This technology has the advantage of extraordinary efficiency of wastewater disposal.
基金supported by the National Key R&D Program of China(Nos.2023YFA1507800,2023YFA1507801)the National Natural Science Foundation of China(Nos.22288102,22208008)the Fundamental Research Funds for the Central Universities,China(No.ZY2423).
文摘Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.
基金supported by the National Natural Science Foundation of China(Nos.51908408 and 21872104)Natural Science Foundation of Tianjin for Distinguished Young Scholar,China(No.20JCJQJC00150).
文摘Green hydrogen production via seawater electrolysis holds a great promise for carbon-neutral energy production. However, the development of efficient and low-cost bifunctional electrocatalysts for seawater electrolysis at an industrial level remains a significant challenge. Herein, we report a facile approach based on one-dimensional (1D) cobalt carbonate hydroxide (CCH) nanoneedles (NNs) as skeleton and zeolitic imidazolate framework-67 (ZIF-67) as a sacrificial template to construct a self-supported NiCo layered double hydroxide (NiCo LDH) heterostructure nanocage (CCH@NiCo LDH) anchoring on the carbon felt (CF). The NiCo LDHs have hollow features, consisting of ultrathin layered hydroxide nanosheets. Benefiting from the structural advantages, unique carbon substrate and desirable composition, three-dimensional (3D) NiCo LDH nanocages exhibit superior performance as a bifunctional catalyst for overall seawater splitting at an industrial level and good corrosion resistance in alkaline media. In the alkaline seawater (1 M KOH + 0.5 M NaCl), it exhibits low overpotentials of 356 mV for hydrogen evolution reaction (HER) and 433 mV for oxygen evolution reaction (OER) at 400 mA·cm^(−2), much better than most of reported non-noble metal catalysts. Consequently, the obtained CF electrode loading of CCH@NiCo LDH exhibits outstanding performance as anodes and cathodes for overall alkaline seawater splitting, with remarkably low cell voltages of 1.56 and 1.89 V at current densities of 10 and 400 mA·cm^(−2), respectively. Moreover, the robust stability of 100 h is also demonstrated at above 200 mA·cm^(−2) in alkaline seawater. Our present work demonstrates significant potential for constructing effective cost-efficient and non-noble-metal bifunctional electrocatalyst and electrode for industrial seawater splitting.
基金the financial support of the Fundamental Research Funds for the Central Universities(No.40120631)the National Natural Science Foundation of China(No.52202291)for the support.+1 种基金C.C.acknowledges the financial support of Natural Science Foundation of Hubei Province(No.2022CFB388)the Natural Science Foundation of Hainan Province of China(No.623MS068).
文摘Transition metal-based layered double hydroxides(LDHs)have been capable of working efficiently as catalysts in the basic oxygen evolution reaction(OER)for sustaining hydrogen production of alkaline water electrolysis.Nevertheless,exploring new LDH-based electrocatalysts featuring both remarkable activity and good stability is still in high demand,which is pivotal for comprehensive understanding and impressive improvement of the sluggish OER kinetics.Here,a series of bimetallic(Co and Mo)LDH arrays were designed and fabricated via a facile and controlled strategy by incorporating a Mo source into presynthesized Co-based metal-organic framework(MOF)arrays on carbon cloth(CC),named as ZIF-67/CC arrays.We found that tuning the Mo content resulted in gradual differences in the structural properties,surface morphology,and chemical states of the resulting catalysts,namely CoMox-LDH/CC(x representing the added weight of the Mo source).Gratifyingly,the best-performing CoMo_(0.20)-LDH/CC electrocatalyst demonstrates a low overpotential of only 226 mV and high stability at a current density of 10 mA·cm^(−2),which is superior to most LDH-based OER catalysts reported previously.Furthermore,it only required 1.611 V voltage to drive the overall water splitting device at the current density of 10 mA·cm^(−2).The present study represents a significant advancement in the development and applications of new OER catalysts.
基金This work was supported by the National Natural Science Foundation of China,the National Key Research and Development Project(2021YFA1502200)the Royal Society and Newton Fund through a Newton Advanced Fellowship award(NAF\R1\191294)+3 种基金the Program for Changjiang Scholars and Innovation Research Team in the University(IRT1205)the Fundamental Research Funds for the Central Universities,the starting-up foundation from Beijing University of Chemical Tech-nology,the fellowship of China Postdoctoral Science Foundation(2020M670107)the Natural Science Foundation of Beijing,China(2214062)the China Scholarship Council and a long-term subsidy from China's Ministry of Finance and the Ministry of Education.
文摘Developing isolated single atomic noble metal catalysts is one of the most effective methods to maximize noble metal atom utilization efficiency and enhance catalytic performances.Layered double hydroxides(LDHs)are two-dimensional nanoarchitectures in which M^(3+) and M^(2+) sites are atomically isolated due to static repulsions,providing special anchoring sites for single noble metal atoms and enabling the tuning of catalytic activity.Herein,a comprehensive review of the advances in LDHs supported single-atom catalysts(M/LDH SACs)is presented,focusing on the synthetic strategies,structure characterization,and application of M/LDH SACs in energy devices.Strong electronic coupling between single atomic noble metal atoms and corresponding anchoring sites of LDHs determines not only the catalytic activity of M/LDH SACs but also the stability during catalytic reactions.Furthermore,a perspective is proposed to highlight the challenges and opportunities for understanding the reaction mechanism and development of highly efficient M/LDH SACs.